Skip to main content

A Computational Framework for Nonlinear Dimensionality Reduction and Clustering

  • Conference paper
Book cover Advances in Self-Organizing Maps (WSOM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5629))

Included in the following conference series:

Abstract

We introduce the Exploration Machine (Exploratory Observation Machine, XOM) as a novel versatile instrument for scientific data analysis and knowledge discovery. XOM systematically inverts structural and functional components of topology-preserving mappings. In contrast to conventional approaches known from the literature, this novel computational framework for self-organization does not require to incorporate additional graphical display or coloring techniques, or to modify topology-preserving mapping algorithms by additional regularization in order to recover the underlying cluster structure of inhomogeneously distributed input data. Thus, XOM can be seen as an approach to bridge the gap between nonlinear embedding and classical topology-preserving feature mapping. At the same time, XOM results in tremendous computational savings when compared to conventional topology-preserving mapping, thus allowing for direct structure-preserving visualization of large data collections without prior data reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeniol, B., De La Croix Vaubois, G., Le Texier, J.Y.: Self-organizing feature maps and the travelling salesman problem. Neural Networks 1, 269–293 (1988)

    Article  Google Scholar 

  2. Cherry, J.M., Ball, C., Weng, S., Juvik, G., Schmidt, R., Adler, C., Dunn, B., Dwight, S., Riles, L., Mortimer, R.K.: Nature 387, 67–73 (1997)

    Article  Google Scholar 

  3. Durbin, R., Willshaw, D.: An analogue approach to the travelling salesman problem using an elastic net method. Nature 326, 689–691 (1987)

    Article  Google Scholar 

  4. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998)

    Article  Google Scholar 

  5. Flexer, A.: On the use of self-organizing maps for clustering and visualization. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS, vol. 1704, pp. 80–88. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Goodhill, G.J., Sejnowski, T.: A unifying objective function for topographic mappings. Neural Comp. 9, 1291–1303 (1997)

    Article  Google Scholar 

  7. Graepel, T., Burger, M., Obermayer, K.: Phase transitions in stochastic self-organizing maps. Physical Review E 56(4), 3876–3890 (1997)

    Article  Google Scholar 

  8. Kaski, S.: Data exploration using self-organizing maps. Act Polytech Scand, Mathematics, Computing and Management in Engineering Series No. 82 (1997)

    Google Scholar 

  9. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  10. Milligan, G.W., Cooper, M.C.: An examination of procedures for determining the number of clusters in a data set. Psychometrika 50, 159–179 (1985)

    Article  Google Scholar 

  11. Ritter, H., Martinetz, T., Schulten, K.: Neural Networks and Self-Organizing Maps. Addison-Wesley, New York (1992)

    MATH  Google Scholar 

  12. Vesanto, J.: SOM-based data visualization methods. Intelligent Data Analysis 3, 111–126 (1999)

    Article  MATH  Google Scholar 

  13. Wiskott, L., Sejnowski, T.: Constrained optimization for neural map formation: a unifying framework for weight growth and normalization. Neural Comp. 10, 671–716 (1998)

    Article  Google Scholar 

  14. Wismüller, A.: Exploratory Morphogenesis (XOM): A Novel Computational Framework for Self-Organization. Ph.D. thesis, Technical University of Munich, Department of Electrical and Computer Engineering (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wismüller, A. (2009). A Computational Framework for Nonlinear Dimensionality Reduction and Clustering. In: Príncipe, J.C., Miikkulainen, R. (eds) Advances in Self-Organizing Maps. WSOM 2009. Lecture Notes in Computer Science, vol 5629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02397-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02397-2_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02396-5

  • Online ISBN: 978-3-642-02397-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics