Skip to main content

Determining Feature Relevance in Subject Responses to Musical Stimuli

  • Conference paper
Mathematics and Computation in Music (MCM 2009)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 38))

Included in the following conference series:

Abstract

This paper presents a method that determines the relevance of a set of signals (musical features) given listener judgments of music in an experimental setting. Rather than using linear correlation methods, we allow for nonlinear relationships and multi-dimensional feature vectors. We first provide a methodology based on polynomial functions and the least-mean-square error measure. We then extend the methodology to arbitrary nonlinear function approximation techniques and introduce the Kullback-Leibler Distance as an alternative relevance metric. The method is demonstrated first with simple artificial data and then applied to analyze complex experimental data collected to examine the perception of musical tension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bigand, E., Parncutt, R., Lerdahl, F.: Perception of musical tension in short chord sequences: The influence of harmonic function, sensory dissonance, horizontal motion, and musical training. Perception & Psychophysics 58, 125–141 (1996)

    Article  Google Scholar 

  • Bigand, E., Parncutt, R.: Perceiving music tension in long chord sequences. Psychological Research 62, 237–254 (1999)

    Article  Google Scholar 

  • Efron, B.: Estimating the Error Rate of a Prediction Rule: Improvements on Cross-Validation. Journal of the American statistical Asociation 78, 316–331 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Farbood, M.: A Quantitative, Parametric Model of Musical Tension. Ph.D. Thesis, Massachusetts Institute of Technology (2006)

    Google Scholar 

  • Gershenfeld, N.: The Nature of Mathematical Modeling. Cambridge University Press, New York (1999)

    MATH  Google Scholar 

  • Gershenfeld, N., Schoner, B., Metois, E.: Cluster-Weighted Modeling for Time Series Analysis. Nature 379, 329–332 (1999)

    Article  Google Scholar 

  • Koller, D., Sahami, M.: Toward Optimal Feature Selection. In: Proceedings of the Thirteenth International Conference on Machine Learning, pp. 284–292 (1996)

    Google Scholar 

  • Krumhansl, C.L.: A perceptual analysis of Mozart’s Piano Sonata K. 282: Segmentation, tension, and musical ideas. Music Perception 13, 401–432

    Google Scholar 

  • Kullback, S., Leibler, R.A.: On Information and sufficiency. Annals of Mathematical statistics 22, 76–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  • Lerdahl, F.: Tonal Pitch Space. Oxford University Press, New York (2001)

    Google Scholar 

  • Lerdahl, F., Krumhansl, C.L.: Modeling Tonal Tension. Music Perception 24, 329–366 (2007)

    Article  Google Scholar 

  • Madson, C.K., Fredrickson, W.E.: The experience of musical tension: A replication of Nielsen’s research using the continuous response digital interface. Journal of Music Therapy 30, 46–63 (1993)

    Article  Google Scholar 

  • Margulis, E.H.: A Model of Melodic Expectation. Music Perception 22, 663–714 (2005)

    Article  Google Scholar 

  • Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  • Nielsen, F.V.: Oplevelse of Musikalsk Spaending. Akademisk Forlag, Copenhagen (1983)

    Google Scholar 

  • Picard, R.W., Vyzas, E., Healey, J.: Toward Machine Emotional Intelligence: Analysis of Affective Physiological State. IEEE Transactions Pattern Analysis and Machine Intelligence 23(10), 1175–1191 (2001)

    Article  Google Scholar 

  • Schoner, B.: Probabilistic Characterization an Synthesis of Complex Driven Systems. Ph.D. Thesis, Massachusetts Institute of Technology (2000)

    Google Scholar 

  • Toiviainen, P., Krumhansl, C.L.: Measuring and modeling real-time responses to music: The dynamics of tonality induction. Perception 32, 741–766 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Farbood, M.M., Schoner, B. (2009). Determining Feature Relevance in Subject Responses to Musical Stimuli. In: Chew, E., Childs, A., Chuan, CH. (eds) Mathematics and Computation in Music. MCM 2009. Communications in Computer and Information Science, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02394-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02394-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02393-4

  • Online ISBN: 978-3-642-02394-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics