Skip to main content

Herbicide Resistance

  • Chapter
  • First Online:
Genetic Modification of Plants

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 64))

Abstract

This is a general review of the global adoption of genetically modified herbicide-resistant crops and the implications that these transgenic crops have on weed populations. Topics discussed include: aspects of the evolution of herbicide-resistant weed biotypes, the mechanisms of resistance and interaction with transgenes. Finally, a brief discussion is developed about the management tactics used in genetically modified herbicide resistant crops and the impact these tactics have on herbicide use, integrated weed management and the environment. While the adoption of genetically modified herbicide crops represents an unprecedented and globally important revolution in agriculture, both the benefits and the risks of these transgenic crops must be considered objectively. Generally, a position is offered that the benefits of the genetically modified herbicide resistant crops outweigh the risks of their cultivation. However, depending on the crop species, location of production and management system employed, the risks attributable to crop production systems based on genetically modified herbicide resistant crops must not be ignored and appropriate adjustments of the management tactics must be implemented in order to mitigate the risks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abud S, de Souza PIM, et al (2007) Gene flow from transgenic to nontransgenic soybean plants in the Cerrado region of Brazil. Gen Mol Res 6:445–452

    CAS  Google Scholar 

  • Ammann K (2005) Effects of biotechnology on biodiversity: herbicide-tolerant and insect-resistant GM crops. Trends Biotechnol 23:388–394

    Article  PubMed  CAS  Google Scholar 

  • Anonymous (2002) Oregon administrative rules, 2002. Oregon State Archives 603-052-1240. http://acrweb.sos.state.or.us/rules/OARS_600/OAR_603/603_052.html. Accessed 15 Oct 2006

  • Anonymous (2004) National crop residue management survey data. www.ctic.purdue.edu/Core4/CT/CT.html. Accessed 15 June 2007

  • Anonymous (2006) National agricultural statistics service acreage report. United States Department of Agriculture, Washington, D.C.

    Google Scholar 

  • Baerson SR, Rodiguez DJ, et al (2002) Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol 129:1265–1275

    Article  PubMed  CAS  Google Scholar 

  • Bauer TA, Mortensen DA (1992) A comparison of economic and economic optimum thresholds for two annual weeds in soybeans. Weed Technol 6:228–235

    Google Scholar 

  • Beckie HJ, Owen MDK (2007) Herbicide-resistant crops as weeds in north America. (CAB reviews 2: perspectives in agriculture, veterinary science, nutrition, and natural resources) CAB Rev 2:22

    Google Scholar 

  • Behrens MR, Mutlu N, et al (2007) Dicamba resistance: enlarging and preserving biotechnology-based weed management strategies. Science 316:1185–1188

    Google Scholar 

  • Benbrook CM (2001) Do GM crops mean less pesticide use? Pest Outlook 12:204–207

    Article  Google Scholar 

  • Boerboom C (2008) Glyphosate resistant weed update. Wisconsin fertilizer, aglime and pest management conference. University of Wisconsin, Madison, pp 102–110

    Google Scholar 

  • Boerboom C, Sprague C, et al (2009) A grower's conundrum: Implementing integrated weed management in a HRC world. Int IPM Symp 6:24

    Google Scholar 

  • Bonny S (2007) Genetically modified glyphosate-tolerant soybean in the USA: adoption factors, impacts and prospects. A review. Agron Sustain Dev 28:21–32

    Article  Google Scholar 

  • Bradshaw LD, Padgette SR, et al (1997) Perspectives on glyphosate resistance. Weed Technol 11:189–198

    CAS  Google Scholar 

  • CaJacob CA, Feng PCC, et al (2007). Genetically modified herbicide-resistant crops. In: Kramer W, Schirmer U (eds) Modern crop protection chemicals, vol 1. Wiley-VCH, Weinheim, pp 283–302

    Google Scholar 

  • Carpenter J, Gianessi L (1999) Herbicide tolerant soybeans: why growers are adopting Roundup Ready varieties. AgBioForum 2:65–72

    Google Scholar 

  • Castle LA, Siehl DL, et al (2004) Discovery and directed evolution of a glyphosate tolerance gene. Science 304:1151–1154

    Article  PubMed  CAS  Google Scholar 

  • Cattaneo MG, Yafuso C, et al (2006) Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield. Proc Natl Acad Sci USA 103:7571–7576

    Article  PubMed  CAS  Google Scholar 

  • Cerdeira AL, Duke SO (2006) The current status and environmental impacts of glyphosate-resistant crops; a review. J Environ Qual 35:1633–1658

    Article  PubMed  CAS  Google Scholar 

  • Charles D (2007) US courts say transgenic crops need tighter scrutiny. Science 315:1069

    Article  PubMed  CAS  Google Scholar 

  • Dill GM (2005) Glyphosate-resistant crops; history, status and future. Pest Manage Sci 61:219–224

    Article  CAS  Google Scholar 

  • Dill GM, CaJacob CA, et al (2008) Glyphosate-resistant crops: adoption, use and future considerations. Pest Manage Sci 64:326–331

    Article  CAS  Google Scholar 

  • Duke SO (2005) Taking stock of herbicide-resistant crops ten years after introduction. Pest Manage Sci 61:211–218

    Article  CAS  Google Scholar 

  • Duke SO, Powles SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manage Sci 64:319–325

    Article  CAS  Google Scholar 

  • Fawcett R, Towery D (2004) Conservation tillage and plant biotechnology: how new technologies can improve the environment by reducing the need to plow. Conservation Technology Information Center, West Lafayette, p. 20

    Google Scholar 

  • Feng PCC, Tran M, et al (2004) Investigations into glyphosate-resistant horseweed (Conyza canadensis): retention, uptake, translocation, and metabolism. Weed Sci 52:498–505

    Article  CAS  Google Scholar 

  • Fisher L (2007) Growers continue to grow and use Roundup Ready alfalfa but Monsanto company is disappointed with preliminary injunction affecting purchase and planting. http://www.monsanto.com Accessed 8 March 2007

  • Gealy DR, Dilday RH (1997) Biology of red rice (Oyrza sativa L.) accessions and their susceptibility to glufosinate and other herbicides. Weed Science Society of America/Allen, Lawrence

    Google Scholar 

  • Gepts P, Papa R (2003) Possible effects of (trans)gene flow from crops on the genetic diversity from landraces and wild relatives. Environ Biosaf Res 2:89–103

    Article  Google Scholar 

  • Gianessi LP (2005) Economic and herbicide use impacts of glyphosate-resistant crops. Pest Manage Sci 61:241–245

    Article  CAS  Google Scholar 

  • Gianessi LP, Reigner NP (2007) The value of herbicides in US crop production. Weed Technol 21:559–566

    Article  Google Scholar 

  • Green JM (2007) Review of glyphosate and ALS-inhibiting herbicide crop resistance and resistant weed management. Weed Technol 21:547–558

    Article  CAS  Google Scholar 

  • Green JM (2009) Evolution of glyphosate-resistant crop technology. Weed Sci 57:108–117

    Article  CAS  Google Scholar 

  • Green JM, Hazel CB, et al (2008) New multiple-herbicide crop resistance and formulation technology to augment the utility of glyphosate. Pest Manage Sci 64:332–339

    Article  CAS  Google Scholar 

  • Green JM, Hale T, et al (2009) Response of 98140 corn with gat4621 and hra transgenes to glyphosate and ALS-inhibiting herbicides. Weed Sci 57:142–148

    Article  CAS  Google Scholar 

  • Gressel J (1995) Creeping resistances: the outcome of using marginally effective or reduced rates of herbicides. Br Crop Protect Conf Weeds 1995: 587–589

    Google Scholar 

  • Gressel J (1996) Fewer constraints than proclaimed to the evolution of glyphosate-resistant weeds. Resist Pest Manage 8:2–5

    Google Scholar 

  • Gressel J, Levy AA (2006) Agriculture: the selector of improbable mutations. Proc Natl Acad Sci USA 103:12215–12216

    Article  PubMed  CAS  Google Scholar 

  • Harper JL (1956) The evolution of weeds in relation to resistance to herbicides. Br Weed Control Conf 3:179–188

    Google Scholar 

  • Harriman P (2007) Roundup Ready concerns land alfalfa seed in court. http://4.26.159.139/static/news/NEWSID_8242.php Accessed 8 Mar 2007

  • Hauser TP, Damgaard C, et al (2003) Frequency-dependent fitness of hybrids between oilseed rape (Brassica napus) and weedy B. rapa (Brassicacaeae). Am J Bot 90:571–578

    Article  PubMed  Google Scholar 

  • Heap I (2009) The international survey of herbicide resistant weeds. www.weedscience.com. Accessed 21 Jun 2009

  • Hinz JJR, Owen MDK (1997) Acetolactate synthase resistance in a common waterhemp (Amaranthus rudis) population. Weed Technol 11:13–18

    CAS  Google Scholar 

  • James C (2008) Global status of commercialized biotech/GM crops: 2007. Int Serv Acquis AgriBiotech Appl 2008:12

    Google Scholar 

  • Johnson WG, Owen MDK, et al (2009) Farmer attitudes toward impending problems with genetically engineered glyphosate resistant crops may endanger the sustainability of chemically based weed management. Weed Technol 23:308–312

    Article  Google Scholar 

  • Kruger GR, Johnson WG, et al (2009) US grower views on problematic weeds and changes in weed pressure in glyphosate-resistant corn, cotton, and soybean cropping systems. Weed Technol 23:162–166

    Article  CAS  Google Scholar 

  • Legere A (2005) Risks and consequences of gene flow from herbicide-resistant crops: canola (Brassica napus L.) as a case study. Pest Manage Sci 61:292–300

    Article  CAS  Google Scholar 

  • Legleiter TR, Bradley KW (2008) Glyphosate and multiple herbicide resistance in common waterhemp (Amaranthus rudis) populations from Missouri. Weed Sci 56:582–587

    Article  CAS  Google Scholar 

  • Lu B-R (2004) Conserving biodiversity of soybean gene pool in the biotechnology era. Plant Species Biol 19:115–125

    Article  Google Scholar 

  • Lu Y-P, Li Z-S, et al (1997) AtMRP1 gene of Arabidopsis encodes a glutathione-S-conjugate pump: Isolation and functional definition of a plant ATP-binding cassette transporter gene. Proc Natl Acad Sci USA 94:8243–8248

    Article  PubMed  CAS  Google Scholar 

  • Lydon J, Duke SO (1999). Inhibitors of glutamine biosynthesis. In: Singh BK (ed) Plant amino acids: biochemistry and biotechnology. Dekker, New York, pp 445–464

    Google Scholar 

  • Mallory-Smith C, Zapiola M (2008) Gene flow from glyphosate-resistant crops. Pest Manage Sci 64:428–440

    Article  CAS  Google Scholar 

  • Maxwell B, Jasieniuk M (2000) The evolution of herbicide resistance evolution models. Int Weed Sci Congr 3:172

    Google Scholar 

  • Mueller TC, Mitchell PD, et al (2005) Proactive versus reactive management of glyphosate-resistant or -tolerant weeds. Weed Technol 19:924–933

    Article  Google Scholar 

  • Ng CH, Wickneswari R, et al (2003) Gene polymorphisms in glyphosate-resistant and -susceptible biotypes of Eleusine indica from Malaysia. Weed Res 43:108–115

    Article  CAS  Google Scholar 

  • Owen MDK (2000) Current use of transgenic herbicide-resistant soybean and corn in the USA. Crop Protect 19:765–771

    Article  Google Scholar 

  • Owen MDK (2001) Importance of weed population shifts and herbicide resistance in the midwest USA corn belt. Br Crop Protect Conf Weeds 2001:407–412

    Google Scholar 

  • Owen MDK (2007) Weed management in 2008 -- new opportunities, existing issues and anticipated problems. Integr Crop Manage Conf 2007:157–167

    Google Scholar 

  • Owen MDK (2008a) Glyphosate resistant crops and evolved glyphosate resistant weeds -- the need for stewardship. Int Weed Sci Congr 5:51

    Google Scholar 

  • Owen MDK (2008b) Weed species shifts in glyphosate-resistant crops. Pest Manage Sci 64:377–387

    Article  CAS  Google Scholar 

  • Owen MDK (2009) Herbicide-tolerant genetically modified crops: resistance management. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified crops. CAB International, Wallingford, pp 113–162

    Google Scholar 

  • Owen M, Boerboom C (2004) National Glyphosate Stewardship Forum. St. Louis, p. 80

    Google Scholar 

  • Owen MDK, Zelaya IA (2005) Herbicide-resistant crops and weed resistance to herbicides. Pest Manage Sci 61:301–311

    Article  CAS  Google Scholar 

  • Owen MDK, Boerboom C, et al (2009) Convenience and simplicity? An illusion and a detriment to integrated weed management. Int Integr Pest Manage Symp 6:127

    Google Scholar 

  • Padgette SR, Delannay X, et al (1995) Development of glyphosate-tolerant crops and perspectives on the potential for weed resistance to glyphosate. Int Symp Weed Crop Resist Herbicides 1995:92

    Google Scholar 

  • Patzoldt WL, Tranel PJ, et al (2005) A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Sci 53:30–36

    Article  CAS  Google Scholar 

  • Patzoldt WL, Hager AG, et al (2006) A codon deletion confers resistance to herbicide inhibiting protoporphyrinogen oxidase. Proc Natl Acad Sci USA 103:12329–12334

    Article  PubMed  CAS  Google Scholar 

  • Pineyro-Nelson A, Van Heerwaarden J, et al (2009) Transgenes in Mexican maize: molecular evidence and methodological considerations for GMO detection in landrace populations. Mol Ecol 18:750–761

    Article  PubMed  CAS  Google Scholar 

  • Powell JR, Levy-Booth DJ, et al (2009) Effects of genetically modified, herbicide-tolerant crops and their management on soil food web properties and crop litter decomposition. J Appl Ecol 46:388–396

    Article  CAS  Google Scholar 

  • Powles SB (2008) Evolution in action: glyphosate-resistant weeds threaten world crops. Outlooks Pest Manage 2008:256–259

    Article  Google Scholar 

  • Preston C, Tardif FJ, et al (1996) Multiple resistance to dissimilar herbicide chemistries in a biotype of Lolium rigidum due to enhanced activity of several herbicide degrading enzymes. Pest Biochem Physiol 54:123–134

    Article  CAS  Google Scholar 

  • Raven PH (2005) Transgenes in Mexican maize: desirability or inevitability? Science 102:13003–13004

    CAS  Google Scholar 

  • Reichman JR, Watrud LS, et al (2006) Establishment of transgenic herbicide-resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats. Mol Ecol 15:4243–4255

    Article  PubMed  CAS  Google Scholar 

  • Ryan GF (1970) Resistance fo common groundsel to simazine and atrazine. Weed Sci 18:614–616

    CAS  Google Scholar 

  • Sammons RD, Heering DC, et al (2007) Sustainability and stewardship of glyphosate and glyphosate-resistant crops. Weed Technol 21:347–354

    Article  CAS  Google Scholar 

  • Scursoni J, Forcella F, et al (2006) Weed diversity and soybean yield with glyphosate management along a north--south transect in the United States. Weed Sci 54:713–719

    Article  CAS  Google Scholar 

  • Scursoni JA, Forcella F, et al (2007) Weed escapes and delayed emergence in glyphosate-resistant soybean. Crop Protect 26:212–218

    Article  CAS  Google Scholar 

  • Service RF (2007) A growing threat down on the farm. Science 316:1114–1116

    Article  PubMed  CAS  Google Scholar 

  • Service RF (2007) Glyphosate -- the conservationist's friend? Science 316:1116–1117

    Article  PubMed  Google Scholar 

  • Shaner DL (2000) The impact of glyphosate-tolerant crops on the use of other herbicides and on resistance management. Pest Manage Sci 56:320–326

    Article  CAS  Google Scholar 

  • Siehl DL, Castle LA, et al (2005) Evolution of microbial acetyltransferase for modification of glyphosate, a novel tolerance strategy. Pest Manage Sci 61:235–240

    Article  CAS  Google Scholar 

  • Steckel LE, Sprague CL, et al (2007) Tillage, cropping system, and soil depth effects on common waterhemp (Amaranthus rudis) seed-bank persistence. Weed Sci 55:235–239

    Article  CAS  Google Scholar 

  • Ulloa SM, Owen MDK (2009) Response of Asiatic dayflower (Commelina communis) to glyphosate and alternatives in soybean. Weed Sci 57:74–80

    Article  CAS  Google Scholar 

  • Young BG (2006) Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol 20:301–307

    Article  Google Scholar 

  • Yuan JS, Tranel PJ, et al (2006) Non-target-site herbicide resistance: a family business. Trends Plant Sci 12:6–13

    Article  PubMed  Google Scholar 

  • Zelaya I, Owen MDK (2000) Differential response of common waterhemp (Amaranthus rudis) to glyphosate in Iowa. Proc Meet Weed Sci Soc Am 40:62–63

    Google Scholar 

  • Zelaya IA, Owen MDK (2004) Evolved resistance to ALS-inhibiting herbicides in common sunflower (Helianthus annuus), giant ragweed (Ambrosia trifida), and shattercane (Sorghum bicolor) in Iowa. Weed Sci 52:538–548

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micheal D. K. Owen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Owen, M.D.K. (2010). Herbicide Resistance. In: Kempken, F., Jung, C. (eds) Genetic Modification of Plants. Biotechnology in Agriculture and Forestry, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02391-0_9

Download citation

Publish with us

Policies and ethics