Precise Breeding Through All-Native DNA Transformation

  • Caius M. RommensEmail author
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 64)


Intragenic modification is a new approach to genetic engineering that improves the agronomic performance and nutritional characteristics of crops without incorporating foreign DNA into their genomes. It transforms plants with all-native and marker-free transfer DNAs carrying gene expression or silencing cassettes. Examples of early applications include enhanced black spot bruise tolerance, reduced cold-induced starch degradation, lowered processing-induced acrylamide formation, extended shelf life, reduced lignin content, and increased antioxidant power. The availability of an increasingly comprehensive toolbox facilitates the activation of dormant traits, while also enabling the efficient elimination of lingering toxins, allergens, and anti-nutritional compounds. By excluding selectable marker genes and other foreign genetic elements, the intragenic approach may not only limit biosafety risks but also expedite the governmental deregulation process while alleviating public concerns regarding engineered crops.


Perennial Ryegrass Selectable Marker Gene Ranger Russet Intragenic Modification Oleic Acid Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bajaj S, Ran Y, Phillips J, Kularajathevan G, Pal S, Cohen D, Elborough K, Puthigae S (2006). A high throughput Agrobacterium tumefaciens-mediated transformation method for functional genomics of perennial ryegrass (Lolium perenne L). Plant Cell Rep 25:651–659PubMedCrossRefGoogle Scholar
  2. Ballester A, Cervera M, Peña L (2007) Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Plant Cell Rep 26:39–45PubMedCrossRefGoogle Scholar
  3. Bent AF (2006) Arabidopsis thaliana floral dip transformation method. In: Wang K (ed) Agrobacterium protocols, 2nd edn. Methods in molecular biology, vol 343. Humana, Totowa, pp 87–103Google Scholar
  4. Bradford KJ, Van Deynze A, Gutterson N, Parrott W, Strauss SH (2005) Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology and genomics. Nat Biotechnol 23:439–444PubMedCrossRefGoogle Scholar
  5. Conner AJ, Barrell PJ, Baldwin SJ, Lokerse AS, Cooper PA, Erasmuson AK, Nap JP, Jacobs JME (2007) Intragenic vectors for gene transfer without foreign DNA. Euphytica 154:341–353CrossRefGoogle Scholar
  6. Daniell H, Muthukumar B, Lee SB (2001) Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr Genet 39:109–116PubMedCrossRefGoogle Scholar
  7. De Vetten N, Wolters AM, Raemakers K, van der Meer I, ter Stege R, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442PubMedCrossRefGoogle Scholar
  8. Deikman J, Kline R, Fischer RL (1992) Organization of ripening and ethylene regulatory regions in a fruit-specific promoter from tomato (Lycopersicon esculentum). Plant Physiol 100:2013–2017PubMedCrossRefGoogle Scholar
  9. Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol 123:895–904PubMedCrossRefGoogle Scholar
  10. Du Jardin P, Harvengt L, Kirsch F, Le V, Nguyen-Quoc B, Serge Yelle S (1997) Sink-cell-specific activity of a potato ADP-glucose pyrophosphorylase B-subunit promoter in transgenic potato and tomato plants. Planta 203:133–139CrossRefGoogle Scholar
  11. Endo S, Sugita K, Sakai M, Tanaka H, Ebinuma H (2002) Single-step transformation for generating marker-free transgenic rice using the ipt-type MAT vector system. Plant J 30:115–122PubMedCrossRefGoogle Scholar
  12. Garbarino JE, Belknap WR (1994) Isolation of a ubiquitin-ribosomal protein gene (ubi3) from potato and expression of its promoter in transgenic plants. Plant Mol Biol 24:119–127PubMedCrossRefGoogle Scholar
  13. Garbarino JE, Oosumi T, Belknap WR (1995) Isolation of a polyubiquitin promoter and its expression in transgenic potato plants. Plant Physiol 109:1371–1378PubMedCrossRefGoogle Scholar
  14. Guyon VN, Astwood JD, Garner EC, Dunker AK, Taylor LP (2000) Isolation and characterization of cDNAs expressed in the early stages of flavonol-induced pollen germination in petunia. Plant Physiol 123:699–710PubMedCrossRefGoogle Scholar
  15. Hoffman NE, Ko K, Milkowski D, Pichersky E (1991) Isolation and characterization of tomato cDNA and genomic clones encoding the ubiquitin gene ubi3. Plant Mol Biol 17:1189–1201PubMedCrossRefGoogle Scholar
  16. Jefferson R, Goldsbrough A, Bevan M (1990) Transcriptional regulation of a patatin-1 gene in potato. Plant Mol Biol 14:995–1006PubMedCrossRefGoogle Scholar
  17. Kaeppler HF (2000) Food safety assessment of genetically modified crops. Agron J 92:793–797CrossRefGoogle Scholar
  18. Keddie JS, Tsiantis M, Piffanelli P, Cella R, Hatzopoulos P, Murphy DJ (1994) A seed-specific Brassica napus oleosin promoter interacts with a G-box-specific protein and may be bi-directional. Plant Mol Biol 24:327–340PubMedCrossRefGoogle Scholar
  19. Kelemen Z, Mai A, Kapros T, Fehér A, Györgyey J, Waterborg JH, Dudits D (2002) Transformation vector based on promoter and intron sequences of a replacement histone H3 gene. A tool for high, constitutive gene expression in plants. Transgenic Res 11:69–72PubMedCrossRefGoogle Scholar
  20. Kim YS, Lee YH, Kim HS, Kim MS, Hahn KW, Ko JH, Joung H, Jeon JH (2008) Development of patatin knockdown potato tubers using RNA interference (RNAi) technology, for the production of human-therapeutic glycoproteins. BMC Biotechnol 8:36PubMedCrossRefGoogle Scholar
  21. Kliebenstein DJ, West MA, van Leeuwen H, Kim K, Doerge RW, Michelmore RW (2006) Genomic survey of gene expression diversity in Arabidopsis thaliana. Genetics 172:1179–1189PubMedCrossRefGoogle Scholar
  22. Kohno-Murase J, Murase M, Ichikawa H, Imamura J (1994) Effects of an antisense napin gene on seed storage compounds in transgenic Brassica napus seeds. Plant Mol Biol 26:1115–1124PubMedCrossRefGoogle Scholar
  23. Kondrak M, van der Meer IM, Banfalvi Z (2006) Generation of marker- and backbone-free transgenic potatoes by site-specific recombination and a bi-functional marker gene in a non-regular one-border Agrobacterium transformation vector. Transgenic Res 15:729–737PubMedCrossRefGoogle Scholar
  24. Lermontova I, Grimm B (2000) Overexpression of plastidic protoporphyrinogen IX oxidase leads to resistance to the diphenyl-ether herbicide acifluorfen. Plant Physiol 122:75–84PubMedCrossRefGoogle Scholar
  25. Li X, Volrath SL, Nicholl DB, Chilcott CE, Johnson MA, Ward ER, Law MD (2003) Development of protoporphyrinogen oxidase as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation of maize. Plant Physiol 133:736–747PubMedCrossRefGoogle Scholar
  26. Liu F, Cao MQ, Li Y, Robaglia C, Tourneur C (1998) In planta transformation of pakchoi (Brassica campestris L ssp Chinensis) by infiltration of adult plants with Agrobacterium. Acta Hortic 467:187–192Google Scholar
  27. Miller M, Tagliani L, Wang N, Berka B, Bidney D, Zhao ZY (2002) High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res 11:381–396PubMedCrossRefGoogle Scholar
  28. Molinier J, Thomas C, Brignou M, Hahne G (2002) Transient expression of ipt gene enhances regeneration and transformation rates of sunflower shoot apices (Helianthus annuus L.). Plant Cell Rep 21:251–256CrossRefGoogle Scholar
  29. Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, Ric De Vos CH, van Tunen AJ, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19:470–474PubMedCrossRefGoogle Scholar
  30. Nielsen KM (2003) Transgenic organisms--time for conceptual diversification? Nat Biotechnol 21:227–228PubMedCrossRefGoogle Scholar
  31. Reddy MS, Chen F, Shadle G, Jackson L, Aljoe H, Dixon RA (2005) Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc Natl Acad Sci USA 102:16573–16578PubMedCrossRefGoogle Scholar
  32. Richael CM, Kalyaeva M, Chretien RC, Yan H, Adimulam S, Stivison A, Weeks JT, Rommens CM (2008) Cytokinin vectors mediate marker-free and backbone-free plant transformation. Transgenic Res 17:905–917PubMedCrossRefGoogle Scholar
  33. Richardson K, Maher D, McGibbon L, Sheridan R, Khan A, Ellison N (2007) A Cisgenic approach to genetic transformation of forage. Presentation to the Plant Transformation Technologies Workshop, ViennaGoogle Scholar
  34. Rommens CM (2008) The need for professional guidelines in plant breeding. Trends Plant Sci 13:261–263CrossRefGoogle Scholar
  35. Rommens CM, Humara JM, Ye J, Yan H, Richael C, Zhang L, Perry R, Swords K (2004) Crop improvement through modification of the plant's own genome. Plant Physiol 135:421–431PubMedCrossRefGoogle Scholar
  36. Rommens CM, Bougri O, Yan H, Humara JM, Owen J, Swords K, Ye J (2005) Plant-derived transfer-DNAs. Plant Physiol 139:1338–1349PubMedCrossRefGoogle Scholar
  37. Rommens CM, Ye J, Richael C, Swords K (2006) Improving potato storage and processing characteristics through all-native DNA transformation. J Agric Food Chem 54:9882–9887PubMedCrossRefGoogle Scholar
  38. Rommens CM, Haring MA, Swords K, Davies HV, Belknap WR (2007) The intragenic approach as a new extension to traditional plant breeding. Trends Plant Sci 12:397–403PubMedCrossRefGoogle Scholar
  39. Rommens CM, Yan H, Swords K, Richael C, Ye J (2008a) Low-acrylamide French fries and potato chips. Plant Biotechnol J 6:843–853PubMedCrossRefGoogle Scholar
  40. Rommens CM, Richael CM, Yan H, Navarre DA, Ye J, Krucker M, Swords K (2008b) Engineered native pathways for high kaempferol and caffeoylquinate production in potato. Plant Biotechnol J 6:870–886PubMedCrossRefGoogle Scholar
  41. Sathish P, Withana N, Biswas M, Bryant C, Templeton K, Al-Wahb M, Smith-Espinoza C, Roche JR, Elborough KM, Phillips JR (2007) Transcriptome analysis reveals season-specific rbcS gene expression profiles in diploid perennial ryegrass (Lolium perenne L). Plant Biotechnol J 5:146–161PubMedCrossRefGoogle Scholar
  42. Scarth R, Tang J (2006) Modification of Brassica oil using conventional and transgenic approaches. Crop Sci 46:1225–1236CrossRefGoogle Scholar
  43. Scott AG, Ellison NE, Richardson KA, Allan AM, Maher DA, Griffiths AG (2006) Isolation of promoters using a white clover GeneThresher sequence database. In: Mercer CF (ed) Breeding for success: diversity in action. Proc Australas Plant Breed Conf 13:775–779Google Scholar
  44. Shorrosh BS (2000) Plant acyltransferases. International patent application WO00/66749Google Scholar
  45. Shorrosh BS (2003) Plant fatty acid desaturase promoters. United States patent US006537750B1Google Scholar
  46. Sjödahl S, Gustavsson HO, Rödin J, Rask L (1995) Deletion analysis of the Brassica napus cruciferin gene cru1 promoter in transformed tobacco: promoter activity during early and late stages of embryogenesis is influenced by cis-acting elements in partially separate regions. Planta 197:264–271PubMedCrossRefGoogle Scholar
  47. Sovero M (1993) Rapeseed, a new oilseed crop for the United States. In: Janick J, Simon JE (eds) New crops. Wiley, New York, pp 302–307Google Scholar
  48. Sun J, Niu QW, Tarkowski P, Zheng B, Tarkowska D, Sandberg G, Chua NH, Zuo J (2003) The Arabidopsis AtIPT8/PGA22 gene encodes an isopentenyl transferase that is involved in de novo cytokinin biosynthesis. Plant Physiol 131:167–176PubMedCrossRefGoogle Scholar
  49. van der Vossen E, Sikkema A, Hekkert BL, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36:867–882PubMedCrossRefGoogle Scholar
  50. van der Vossen EA, Gros J, Sikkema A, Muskens M, Wouters D, Wolters P, Pereira A, Allefs S (2005) The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. Plant J 44:208–222PubMedCrossRefGoogle Scholar
  51. Van Haaren MJ, Houck CM (1993) A functional map of the fruit-specific promoter of the tomato 2A11 gene. Plant Mol Biol 21:625–640PubMedCrossRefGoogle Scholar
  52. Visser RG, Stolte A, Jacobsen E (1991) Expression of a chimaeric granule-bound starch synthase-GUS gene in transgenic potato plants. Plant Mol Biol 17:691–699PubMedCrossRefGoogle Scholar
  53. Weeks JT, Ye J, Rommens CM (2008) Development of an in planta method for transformation of alfalfa (Medicago sativa). Transgenic Res 17:587–597PubMedCrossRefGoogle Scholar
  54. Winicov I (2000) Alfin1 transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. Planta 210:416–422PubMedCrossRefGoogle Scholar
  55. Zitnack A, Johnson GR (1970) Glycoalkaloid content of B5141-6 potatoes. Am Potato J 47:256–260CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Simplot Plant Sciences, J.R. Simplot CompanyBoiseUSA

Personalised recommendations