Advertisement

Concepts of Marker Genes for Plants

  • Josef KrausEmail author
Chapter
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 64)

Abstract

Marker genes, more exactly named selectable marker genes, are absolutely essential for the production of transgenic plants. They are required to identify, to “mark” the introduced genes and finally to enable the selective growth of transformed cells. These marker genes are co-transformed with the gene of interest (GOI); they are linked to the GOI and therefore remain in the transformed cell. However, once transgenic cells have been identified und regenerated to whole plants, the marker genes are no longer needed. For this reason new concepts of marker genes are discussed with regard to the safety of genetically modified plants to both the environment and the consumer. This chapter reviews the most important marker genes available for gene transfer to plants, focusing particularly on recent advances, and discusses new systems for marker gene-free transformation techniques, as well as marker gene deletion.

Keywords

Transgenic Plant Marker Gene Selectable Marker Gene Xylose Isomerase Cytosine Deaminase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. ACNFP (1996) The use of antibiotic resistance markers in genetically modified plants for human food. The Advisory Committee on Novel Foods and Processes, LondonGoogle Scholar
  2. AGBIOS (2008) http://www.agbios.com/dbase.php. Agriculture & Biotechnology Strategies (Canada)Google Scholar
  3. Arias RS, Dayan FE, Michel A, Howell JL, Scheffler BE (2006) Characterization of a higher plant herbicide-resistant phytoene desaturase and its use as a selectable marker. Plant Biotechnol J 4:263–273PubMedCrossRefGoogle Scholar
  4. Arumugam N, Gupta V, Jagannath A, Mukhopadhyay A, Pradhan AK, Burma PK, Pental D (2007) A passage through in vitro culture leads to efficient production of marker-free transgenic plants in Brassica juncea using the Cre-lox system. Transgenic Res 16:703–712PubMedCrossRefGoogle Scholar
  5. Bai X, Wang Q, Chu C (2008) Excision of a selective marker in transgenic rice using a novel Cre/loxP system controlled by a floral specific promoter. Transgenic Res. doi:10.1007/s11248-008-9182-7Google Scholar
  6. Ballester A, Cervera M, Pena L (2008) Evaluation of selection strategies alternative to nptII in genetic transformation of citrus. Plant Cell Rep 27:1005–1015. doi:10.1007/s00299-008-0523-zCrossRefGoogle Scholar
  7. Barrett C, Cobb E, McNicol R, Lyon G (1997) A risk assessment study of plant genetic transformation using Agrobacterium and implications for analysis of transgenic plants. Plant Cell Tissue Organ Cult 47:135–144CrossRefGoogle Scholar
  8. Bennett PM, Livesey CT, Nathwani D, Reeves DS, Saunders JR, Wise R (2004) An assessment of the risks associated with the use of antibiotic resistance genes in genetically modified plants: report of the Working Party of the British Society for Antimicrobial Chemotherapy. J Antimicrob Chemother 53:418–431PubMedCrossRefGoogle Scholar
  9. Breitler JC, Labeyrie A, Meynard D, Legavre T, Guiderdoni E (2002) Efficient microprojectile bombardment-mediated transformation of rice using gene cassettes. Theor Appl Genet 104:709–719PubMedCrossRefGoogle Scholar
  10. Breitler JC, Meynard D, Boxtel JV, Royer M, Bonnot F, Cambillau L, Guiderdoni E (2004) A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.). Transgenic Res 13:271–287PubMedCrossRefGoogle Scholar
  11. Bříza J (2008) Use of phosphomannose isomerase-based selection system for Agrobacterium-mediated transformation of tomato and potato. Biol Plant 52:453–461CrossRefGoogle Scholar
  12. Bukovinszki A, Diveki Z, Csanyi M, Palkovics L, Balazs E (2007) Engineering resistance to PVY in different potato cultivars in a marker-free transformation system using a ‘shooter mutant’ A. tumefaciens. Plant Cell Rep 26:459–465. doi:10.1007/s00299-006-0257-8CrossRefGoogle Scholar
  13. Calgene (1993) Request for food additive regulation for aminoglycoside 3'-phosphotransferase II. Food Additive Petition 3A4364. Docket 91A-0330.Google Scholar
  14. Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99:7877–7882PubMedCrossRefGoogle Scholar
  15. Chakraborti D, Sarkar A, Mondal HA, Schuermann D, Hohn B, Sarmah BK and Sampa D (2008) Cre/ lox system to develop selectable marker free transgenic tobacco plants conferring resistance against sap sucking homopteran insect. Plant Cell Rep 27:1623–1633. doi:10.1007/s00299-008-0585-yCrossRefGoogle Scholar
  16. Cotsaftis O, Sallaud C, Breitler JC, Meynard D, Greco R, Pereira A, Guiderdoni E (2002) Transposon-mediated generation of T-DNA- and marker-free rice plants expressing a Bt endotoxin gene. Mol Breed 10:165–180CrossRefGoogle Scholar
  17. Cox MM (1983) The FLP protein of the yeast 2 mm plasmid: expression of a eukaryotic genetic recombination system in Escherichia coli. Proc Natl Acad Sci USA 80:4223–4227PubMedCrossRefGoogle Scholar
  18. Cuellar W, Gaudin A, Solorzano D, Casas A, Nopo L, Chudalayandi P, Medrano G, Kreuze J, Ghislain M (2006) Self-excision of the antibiotic resistance gene nptII using a heat inducible Cre-loxP system from transgenic potato. Plant Mol Biol 62:71–82PubMedCrossRefGoogle Scholar
  19. Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88:10558–10562PubMedCrossRefGoogle Scholar
  20. Darbani B, Elimanifar A, Stewart CN, Camargo WN (2007) Methods to produce marker-free transgenic plants. Biotechnol J 2:83–90PubMedCrossRefGoogle Scholar
  21. De Block M, Debrouwer D (1991) Two T-DNAs co-transformed into Brassica napus by a double Agrobacterium infection are mainly integrated at the same locus. Theor Appl Genet 82:257–263CrossRefGoogle Scholar
  22. De Block M, Herrera-Estrella L, Van Montagu M,Schell J, Zambryski P (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBOJ 3:1681–1689Google Scholar
  23. Degenhardt J, Poppe A, Montag J, Szankowski I (2006) The use of the phosphomannose-isomerase/mannose selection system to recover transgenic apple plants. Plant Cell Rep 25:1149–1156CrossRefGoogle Scholar
  24. de Vetten N, Wolters AM, Raemakers K, van der Meer I, ter Stege R, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442. doi:10.1016/j.tplants.2004.06.001PubMedCrossRefGoogle Scholar
  25. Dill GM, CaJacob CA, Padgette SR (2008) Glyphosate-resistant crops: adoption, use and future considerations. Pest Manag Sci 64:326–331PubMedCrossRefGoogle Scholar
  26. Ebinuma H, Komamine A (2001) MAT (multi-auto-transformation) vector system. The oncogenes of Agrobacterium as positive markers for regeneration and selection of marker-free transgenic plants. In Vitro Cell Dev Biol 37:103–113Google Scholar
  27. Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene as a selectable marker. Proc Natl Acad Sci USA 94:2117–2121PubMedCrossRefGoogle Scholar
  28. Ebinuma H, Sugita K, Matsunaga E, Endo S, Kasahara T (2000) Selection of marker-free transgenic plants using the oncogenes (IPT, ROL A,B,C) of Agrobacterium as selectable markers. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, vol II. Kluwer, Dordrecht, pp 25–46CrossRefGoogle Scholar
  29. EFSA (2004) Opinion of the scientific panel on genetically modified organisms on the use of antibiotic resistance genes as marker genes in genetically modified plants. EFSA J 48:1–18. www.gmo-compass.org/pdf/documents/efsa_marker.pdf. Accessed 2 Apr 2004Google Scholar
  30. EFSA (2007) Statement of the scientific panel on genetically modified organisms on the safe use of the nptII antibiotic resistance marker gene in genetically modified plants. www.efsa.europa.eu/EFSA/Statement/gmo_statement_nptII_.pdf. Accessed 23 Mar 2007
  31. Endo S, Kasahara T, Sugita K, Matsunaga E, Ebinuma H (2001) The isopentenyl transferase gene is effective as a selectable marker gene for plant transformation in tobacco (Nicotiana tabacum cv. Petite Havana SRI). Plant Cell Rep 20:60–66CrossRefGoogle Scholar
  32. Erikson O, Hertzberg M, Nasholm T (2004) A conditional marker gene allowing both positive and negative selection in plants. Nat Biotechnol 22:455–458. doi:10.1038/nbt946PubMedCrossRefGoogle Scholar
  33. FAO/WHO (2000) Safety aspects of genetically modified foods of plant origin. Report of a joint FAO/WHO expert consultation on foods derived from biotechnology. World Health Organization, Geneva. ftp://ftp.fao.org/es/esn/food/gmreport.pdf. Accessed 2 Jun 2000Google Scholar
  34. FDA (1994) Secondary direct food additives permitted in food for human consumption; food additives permitted in feed and drinking water of animals; amino glycoside 3'-phosphotransferase II. Fed Reg 59:26700–26711Google Scholar
  35. FDA (1998) Guidance for industry: use of antibiotic resistance marker genes in transgenic plants. http://vm.cfsan.fda.gov/∼dms/opa-armg.html. Accessed 4 Sept 1998
  36. Framond AJD, Back EW, Chilton WS, Kayes L, Chilton M (1986) Two unlinked T-DNAs can transform the same tobacco plant cell and segregate in the F1 generation. Mol Gen Genet 202:125–131CrossRefGoogle Scholar
  37. Fu XD, Duc L, Fontana S, Bong BB, Tinjuangjun P, Sudhakar D, Twyman RM, Christou P, Kohli A (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res 9:11–19PubMedCrossRefGoogle Scholar
  38. Fuchs RL, Ream JE, Hammond BG (1993) Safety assessment of the neomycin phosphotransferase II (NPTII) protein. Biotechnology 11:1543–1547PubMedCrossRefGoogle Scholar
  39. Garfinkel DJ, Simpson RB, Ream LW, White FF, Gordon MP, Nester EW (1981) Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis. Cell 27:143–153PubMedCrossRefGoogle Scholar
  40. GMO-Safety (2005) http://www.gmo-safety.eu/en/safety_science/38.docu.html. Accessed 5 Aug 2005
  41. GMO-Safety (2007) http://www.gmo-safety.eu/en/safety_science/160.docu.html. Accessed 18 Dec 2007
  42. Goedeke S, Hensel G, Kapusi E, Gahrtz M, Kumlehn J (2007) Transgenic barley in fundamental research and biotechnology. Transgenic Plant J 1:104–117Google Scholar
  43. Goldsbrough AP, Lastrella CN, Yoder JI (1993) Transposition mediated repositioning and subsequent elimination of marker genes from transgenic tomato. Biotechnology 11:1286–1292Google Scholar
  44. Goldstein DA, Tinland B, Gilbertson LA, Staub JM, Bannon GA, Goodman RE, McCoy RL, Silvanovich A (2005) Human safety and genetically modified plants: a review of antibiotic resistance markers and future transformation selection technologies. J Appl Microbiol 99:7–23. doi:10.1111/j.1365-2672.2005.02595.xPubMedCrossRefGoogle Scholar
  45. Gough KC, Hawes WS, Kilpatrick J, Whitelam GC (2001) Cyanobacterial GR6 glutamate-1-semialdehyde aminotransferase: a novel enzyme-based selectable marker for plant transformation. Plant Cell Rep 20:296–300. doi:10.1007/s002990100337CrossRefGoogle Scholar
  46. Haldrup A, Petersen SG, Okkels FT (1998) Positive selection: a plant selection principle based on xylose isomerase, an enzyme used in the food industry. Plant Cell Rep 18:76–81CrossRefGoogle Scholar
  47. Halpin C (2005) Gene stacking in transgenic plants -- the challenge for 21st century plant biotechnology. Plant Biotechnol J 3:141–155PubMedCrossRefGoogle Scholar
  48. Hare PD, Chua NH (2002) Excision of selectable marker genes from transgenic plants. Nat Biotechnol 20:575–580. doi:10.1038/nbt0602-575PubMedCrossRefGoogle Scholar
  49. Haseloff J, Amos B (1995) GFP in plants. Trends Genet 11:328–329Google Scholar
  50. Herrera-Estrella L, Depicker A, Van Montagu M, Schell J (1983) Chimeric genes are transferred and expressed in plants using a Ti plasmid-derived vector. Nature 303: 209–213CrossRefGoogle Scholar
  51. Hille J, Verheggen F, Roelvink P, Franssen H, van Kammen A, Zabel P (1986) Bleomycin resistance: a new dominant selectable marker for plant cell transformation. Plant Mol Biol 7:171–176CrossRefGoogle Scholar
  52. Hoa TTC, Bong BB, Huq E, Hodge TK (2002) Cre/lox site-specific recombination controls the excision of a transgene from the rice genome. Theor Appl Genet 104:518–525PubMedCrossRefGoogle Scholar
  53. Hoff T, Schnorr KM, Mundy J (2001) A recombinase-mediated transcriptional induction system in transgenic plants. Plant Mol Biol 45:41–49PubMedCrossRefGoogle Scholar
  54. Inui H, Yamada R, Yamada T, Ohkawa Y, Ohkawa H (2005) A selectable marker using cytochrome P450 monooxygenases for Arabidopsis transformation. Plant Biotechnol 22: 281–286CrossRefGoogle Scholar
  55. Jain M, Chengalrayan K, Abouzid A, Gallo M (2007) Prospecting the utility of a PMI/mannose selection system for the recovery of transgenic sugarcane (Saccharum spp hybrid) plants. Plant Cell Rep 26:581–590. doi: 10.1007/s00299-006-0244-0PubMedCrossRefGoogle Scholar
  56. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405CrossRefGoogle Scholar
  57. Jia H, Liao M, Verbelen JP, Vissenberg K (2007) Direct creation of marker-free tobacco plants from agroinfiltrated leaf discs. Plant Cell Rep 26:1961–1965. doi:10.1007/s00299-007-0403-yPubMedCrossRefGoogle Scholar
  58. Joersbo M, Donaldson I, Kreiberg J, Petersen SG, Brunstedt J (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breed 4:111–117. doi:10.1023/A:1009633809610CrossRefGoogle Scholar
  59. Joersbo M, Petersen SG, Okkels FT (1999) Parameters interacting with mannose selection employed for the production of transgenic sugar beet. Physiol Plant 105:109–115CrossRefGoogle Scholar
  60. Joersbo M, Mikkelsen JD, Brunstedt J (2000) Relationship between promoter strength and transformation frequencies using mannose selection for the production of transgenic sugar beet. Mol Breed 6:207–213CrossRefGoogle Scholar
  61. Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2007) Herbicide resistance of transgenic rice plants expressing human CYP1A1. Biotechnol Adv 25:75–84CrossRefGoogle Scholar
  62. Kilby NJ, Davies GJ, Michael RS, Murray JAH (1995) FLP recombinase in transgenic plants: constitutive activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis. Plant J 8:637–652PubMedCrossRefGoogle Scholar
  63. Koenig A (2000) Development and biosafety aspects of transgene excision methods. In: Fairbairn C, Scoles G, McHughen A (eds) Proc Int Sym Biosaf Genet Modif Org 6:155–170Google Scholar
  64. Komari T, Hiei Y, Saito Y, Murai N (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174PubMedCrossRefGoogle Scholar
  65. Kondrák M, Rouwendal GJA, van der Meer I, Bánfalvi Z (2006) Generation of marker- and backbone-free transgenic potatoes by site-specific recombination and a bifunctional marker gene in a non-regular one-border Agrobacterium transformation vector. Transgenic Res 15:729–737PubMedCrossRefGoogle Scholar
  66. Kopertekh L, Jüttner G, Schiemann J (2004) PVX-Cre-mediated marker gene elimination from transgenic plants. Plant Mol Biol 55:491–500PubMedCrossRefGoogle Scholar
  67. Koprek T, McElroy D, Louwerse J, Willams-Carrier R, Lemaux PG (1996) Negative selection systems for transgenic barley (Hordeum vulgare L.): comparison of bacterial codA- and cytochrome P450 gene-mediated selection. Plant J 19:719–726CrossRefGoogle Scholar
  68. Kunze I, Ebneth M, Heim U, Geiger M, Sonnewald U, Herbers K (2001) 2-Deoxyglucose resistance: a novel selection marker for plant transformation. Mol Breed 7:221–227CrossRefGoogle Scholar
  69. Lee K, Yang K, Kang K, Kang S, Lee N, Back K (2007) Use of Myxococcus xanthus protoporphyrinogen oxidase as a selectable marker for transformation of rice. Pestic Biochem Physiol 88:31–35. http://dx.doi.org/10.1016/j.pestbp.2006.08.011 CrossRefGoogle Scholar
  70. Lennefors BL, Savenkov E, Bensefelt J, Wremerth-Weich E, Roggen P, Tuvesson S, Valkonen PTJ, Gielen J (2006) dsRNA-mediated resistance to beet necrotic yellow vein virus infections in sugar beet (Beta vulgaris L. ssp. vulgaris). Mol Breed 18:313–325CrossRefGoogle Scholar
  71. Li HQ, Pei-Jing K, Mei-Lan L, Mei-Ru L (2007) Genetic transformation of Torenia fournieri using the PMI/mannose selection system. Plant Cell Tissue Organ Cult 90:103–109CrossRefGoogle Scholar
  72. Li X, Volrath SL, Nicholl DBG, Chilcott CE, Johnson MA, Ward ER, Law MD (2003) Development of protoporphyrinogen oxidase as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation of maize. Plant Physiol 133:736–747. doi:10.1104/pp.103.026245PubMedCrossRefGoogle Scholar
  73. Libiakova G, Jørgensen B, Palmgren G, Ulvskov P, Johansen E (2001) Efficacy of an intron containing kanamycin resistance gene as selectable marker in plant transformation. Plant Cell Rep 20:610–615CrossRefGoogle Scholar
  74. Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102:2232–2237PubMedCrossRefGoogle Scholar
  75. Lucca P, Ye X, Potrykus I (2001) Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol Breed 7:43–49CrossRefGoogle Scholar
  76. Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart CN JR, McAvoy R, Jiang X, Wu Y (2007) ‘‘GM-Gene-deletor’’: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J 5:263–274PubMedCrossRefGoogle Scholar
  77. Luo K, Sun M, Deng W, Xu S (2008) Excision of selectable marker gene from transgenic tobacco using the GM-gene-deletor system regulated by a heat-inducible promoter. Biotechnol Lett 30:1295–1302. doi:10.1007/s10529-008-9684-7PubMedCrossRefGoogle Scholar
  78. Maas C, Simpsom CG, Eckes P, Schickler H, Brown JWS, Reiss B, Salchert K, Chet I, Schell J, Reichel C (1997) Expression of intron-modified NPT II genes in monocotyledonous and dicotyledonous plant cells. Mol Breed 3:15–28CrossRefGoogle Scholar
  79. Maliga P, Svab Z, Harper EC, Jones JDG (1988) Improved expression of streptomycin resistance in plants due to a deletion in the streptomycin phosphotransferase coding sequence. Mol Gen Genet 214:456–459PubMedCrossRefGoogle Scholar
  80. Malnoy M, Borejsza-Wysocka EE, Abbott P, Lewis S, Norelli JL, Flaishman M, Gidoni D, Aldwinckle HS (2007) Genetic transformation of apple without use of a selectable marker. Acta Hortic 738:319–322Google Scholar
  81. Mathews PR, Wang MB, Waterhouse PM, Thornton S, Fieg SJ, Gubler F, Jacobsen JV (2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Mol Breed 7:195–202CrossRefGoogle Scholar
  82. Matzke MA, Mette MF, Matzke AJM (2000) Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol Biol 43:401–415PubMedCrossRefGoogle Scholar
  83. McCormac AC, Fowler MR, Chen D, Elliot MC (2001) Efficient co-transformation of Nicotiana tabacum by two independent T-DNA, the effect of T-DNA size and implications for genetic separation. Transgenic Res 10:143–155PubMedCrossRefGoogle Scholar
  84. McKenzie MJ, Mett V, Jameson PE (2000) Modified ELISA for the detection of neomycin phosphotransferase II in transformed plant species. Plant Cell Rep 19:286–289CrossRefGoogle Scholar
  85. McKnight TD, Lillis MT, Simpson RB (1987) Segregation of genes transferred to one plant cell from two separate Agrobacterium strains. Plant Mol Biol 8:439–445CrossRefGoogle Scholar
  86. Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232. doi:10.1016/j.jbiotec.2003.10.011PubMedCrossRefGoogle Scholar
  87. Mlynarova L, Conner AJ, Nap JP (2006) Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission. Plant Biotechnol J 4:445–452PubMedCrossRefGoogle Scholar
  88. Nap J, Bijvoet J, Stiekema W (1992) Biosafety of kanamycin-resistant transgenic plants. Transgenic Res 1:239–249PubMedCrossRefGoogle Scholar
  89. O'Kennedy MM, Grootboom A, Shewry PR (2006) Harnessing sorghum and millet biotechnology for food and health. J Cereal Sci 44:224–235. doi:10.1016/j.jcs.2006.08.001CrossRefGoogle Scholar
  90. Ow DW (2002) Recombinase-directed plant transformation for the post genomic era. Plant Mol Biol 48:183–200PubMedCrossRefGoogle Scholar
  91. Ow QW, Wood KV, DeLuca M, DeWet J, Helinski D R, Howell SH (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234:856–859PubMedCrossRefGoogle Scholar
  92. Park J, Lee YK, Kang BK, Chung W (2004) Co-transformation using a negative selectable marker gene for production of selectable marker gene-free transgenic plants. Theor Appl Genet 109:1562–1567PubMedCrossRefGoogle Scholar
  93. Paszkowski J, Peterhans A, Bilang R, Filipowicz W (1992) Expression in transgenic tobacco of the bacterial neomycin phosphotransferase gene modified by intron insertions of various sizes. Plant Mol Biol 19:825–836CrossRefGoogle Scholar
  94. Puchta H (2002) Gene replacement by homologous recombination in plants. Plant Mol Biol 48:173–180PubMedCrossRefGoogle Scholar
  95. Que Q, Jorgensen RA (1998) Homology-based control of gene expression patterns in transgenic petunia flowers. Dev Genet 22:100–109PubMedCrossRefGoogle Scholar
  96. Ramessar K, Peremarti A, Gómez-Galera S, Naqvi S, Moralejo M, Muñoz P, Capell T, Christou P (2007) Biosafety and risk assessment framework for selectable marker genes in transgenic crop plants: a case of the science not supporting the politics. Transgenic Res 16:261–280. doi:10.1007/s11032-008-9217-zPubMedCrossRefGoogle Scholar
  97. Redenbaugh K, Hiatt W Houck C, Kramer M, Malyj L, Martineau B, Rachman N, Rudenko L, Sanders R, Sheedy R, Wixtrom R (1993) Regulatory issues for commercialization of tomatoes with an antisense polygalacturonase gene. In Vitro Cell Dev Biol 29:17–26Google Scholar
  98. Richael CM, Kalyaeva M, Chretien RC, Yan H, Adimulam S, Stivison A, Weeks JT, Rommens CM (2008) Cytokinin vectors mediate marker-free and backbone-free plant transformation. Transgenic Res 17:905–917PubMedCrossRefGoogle Scholar
  99. Romano A, Raemakers K, Bernardi J, Visser R, Mooibroek H (2003) Transgene organization in potato after particle bombardment-mediated (co) transformation using plasmids and gene cassettes. Transgenic Res 12:461–473PubMedCrossRefGoogle Scholar
  100. Rommens CM, Humara JM, Ve J, Yan H, Richael C, Zhang L, Perry R, Sword K (2004) Crop improvement through modification of the plant's own genome. Plant Physiol 135:421–431PubMedCrossRefGoogle Scholar
  101. Rommens CM, Ye J, Richael C, Swords K (2006) Improving potato storage and processing characteristics through all-native DNA transformation. J Agric Food Chem 54:9882–9887PubMedCrossRefGoogle Scholar
  102. Schlaman HRM, Hooykaas PJJ (1997) Effectiveness of the bacterial gene codA encoding cytosine deaminase as a negative selectable marker in Agrobacterium-mediated plant transformation. Plant J 11:1377–1385CrossRefGoogle Scholar
  103. Sreekala C, Wu L, Gu K, Wang D, Tian D, Yin Z (2005) Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system. Plant Cell Rep 24:86–94PubMedCrossRefGoogle Scholar
  104. Sripriya R, Raghupathy V, Veluthambi K (2008) Generation of selectable marker-free sheath blight resistant transgenic rice plants by efficient co-transformation of a cointegrate vector T-DNA and a binary vector T-DNA in one Agrobacterium tumefaciens strain. Plant Cell Rep 27:1635–1644PubMedCrossRefGoogle Scholar
  105. Srivastava V, Ow DW (2004) Marker-free site-specific gene integration in plants. Trends Biotechnol 22:627–629CrossRefGoogle Scholar
  106. SSC (1999) Opinion of the scientific steering committee on antimicrobial resistance. European Commission Directorate-General XXIV. http://ec.europa.eu/food/fs/sc/ssc/out50_en.pdf. Accessed 28 May 1999Google Scholar
  107. Sternberg N, Hamilton D (1981) Bacteriophage P1 site-specific recombination between loxP sites. J Mol Biol 150:467–486PubMedCrossRefGoogle Scholar
  108. Sugita K, Kasahara T, Matsunaga E, Ebinuma H (2000) A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J 22:461–469PubMedCrossRefGoogle Scholar
  109. Sundar IK, Sakthivel N (2008) Advances in selectable marker genes for plant transformation. J Plant Physiol 165:1698–1716. doi:10.1016/j.jplph.2008.08.002PubMedCrossRefGoogle Scholar
  110. Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917PubMedCrossRefGoogle Scholar
  111. United States Food and Drug Administration (1994) Secondary direct food additives permitted in food for human consumption; food additives permitted in feed and drinking water of animals; aminoglycoside 3′-phosphotransferase II. Fed Reg 59:26700–26711Google Scholar
  112. Upadhyaya NM, Zhou X-R, Wu L, Ramm K, Dennis ES (2000) The tms2 gene works as a negative selection marker in rice. Plant Mol Biol Rep 18:227–233CrossRefGoogle Scholar
  113. Van den Elzen PJM, Townsend J, Lee KY, Bedbrook JR (1985) A chimaeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol Biol 5:299–302CrossRefGoogle Scholar
  114. Vidal JR, Kikkert JR, Donzelli BD, Wallace PG, Reisch BI (2006) Biolistic transformation of grapevine using minimal gene cassette technology. Plant Cell Rep 8:807–814CrossRefGoogle Scholar
  115. Weeks JT, Koshiyama KY, Maier-Greiner UH, Schaeffner T, Anderson OD (2000) Wheat transformation using cyanamide as a new selective agent. Crop Sci 40:1749–1754CrossRefGoogle Scholar
  116. WHO (2005) Critically important antibacterial agents for human medicine for risk management strategies of non-human use. Report of a WHO working group consultation, Canberra, Australia, World Health Organization. http://www.who.int/foodborne_disease/resistance/FBD_CanberraAntibacterial_FEB2005.pdf. Accessed 18 Feb 2005Google Scholar
  117. Wögerbauer M (2007) Risk assessment of antibiotic resistance marker genes in genetically modified organisms: a comprehensive report. In: Bundesministerium für Gesundheit, Familie und Jugend (ed) Forschungsberichte der Sektion IV, Bundesministerium für Gesundheit, Familie und Jugend, Vienna, pp 118–131Google Scholar
  118. Wright DA, Townsend JA, Winfrey RJ JR, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44:693–705PubMedCrossRefGoogle Scholar
  119. Yoder JI Goldsbrough AP (1994) Transformation systems for generating marker-free transgenic plants. Biotechnology 12:263–267CrossRefGoogle Scholar
  120. Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V, Gilbertson L (2003) Cre/lox-mediated marker gene excision in transgenic maize (mays L.) plants. Theor Appl Genet 107:1157–1168PubMedCrossRefGoogle Scholar
  121. Zhao Y, Qian Q, Wang H, Huang D (2007) Co-transformation of gene expression cassettes via particle bombardment to generate safe transgenic plant without any unwanted DNA. In Vitro Cell Dev Biol Plant 43:328–334Google Scholar
  122. Zhu XD, Sadowski PD (1995) Cleavage-dependent ligation by the FLP recombinase. J Biol Chem 270:23044–23054PubMedCrossRefGoogle Scholar
  123. Zhu, Yun J,Agbayani R, McCafferty H, Albert HH, Moore PH (2005) Effective selection of transgenic papaya plants with the PMI/Man selection system. Plant Cell Rep 24:426–432PubMedCrossRefGoogle Scholar
  124. Ziemienowicz A (2001)Plant selectable markers and reporter genes. Acta Physiol Plant 23:363–374CrossRefGoogle Scholar
  125. ZKBS (1999) Stellungnahme der ZKBS zur Biologischen Sicherheit von Antibiotika-Resistenzgenen im Genom gentechnisch veränderter Pflanzen. Zentrale Kommission für die Biologische Sicherheit. http://www.bvl.bund.de/cln_027/nn_1208608/DE/06_Gentechnik/093_ZKBS/01_Allg_Stellungnahmen/04_pflanzen/biol_sich.html. Accessed 6 Jul 1999
  126. Zuo J, Niu QW, Moller SG, Chua NH (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol 19:157–161PubMedCrossRefGoogle Scholar
  127. Zuo J, Niu QW, Ikeda Y, Chua NH (2002) Marker-free transformation: increasing transformation frequency by the use of regeneration-promoting genes. Curr Opin Biotechnol 13:173–180PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.PLANTA Angewandte Pflanzengenetik und Biotechnologie GmbH/KWSEinbeckGermany

Personalised recommendations