• Hao Chen
  • Yongjun Lin
  • Qifa ZhangEmail author
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 64)


Rice is a staple crop for more than half of the world's population. Rice improvement has achieved remarkable success in the past half-century, with the yield doubled in most parts of the world and even tripled in certain regions, which has contributed greatly to food security globally. However, rice yield recently reached a ceiling due to increasingly severe occurrences of insects, diseases, and water shortage. Rapid population growth and economic development pose a constant pressure for yield increase in rice production. Recently, a novel rice-breeding goal was proposed: the development of Green Super Rice to address these challenges. On the premise of continued yield increase and quality improvement, Green Super Rice would possess multiple resistance to insects and diseases, high nutrient-use efficiency, and drought resistance. The application of transgenic approach is essential to realize this goal. Rice is also one of the most amenable crop plants for transformation with highly efficient transformation technology. Many transgenic studies of rice have been conducted, and most of the target traits are consistent with the goal of Green Super Rice. In this chapter, we review the main progress of transgenic rice on a number of fronts. Although no transgenic rice has currently been commercialized in rice production, we believe that transgenic rice will play a crucial role in realizing the breeding goal of Green Super Rice to ensure sustainable rice production in the future.


Genetically Modify Transgenic Rice Genetically Modify Crop Transgenic Rice Plant Abiotic Stress Tolerance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alcantara EP, Aguda RM, Curtiss A, Dean DH, Cohen MB (2004) Bacillus thuringiensis δ-endotoxin binding to brush border membrane vesicles of rice stem borers. Arch Insect Biochem Physiol 55:169–177PubMedCrossRefGoogle Scholar
  2. Ariizumi T, Kishitani S, Inatsugi R, Nishida I, Murata N, Toriyama K (2002) An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings. Plant Cell Physiol 43:751–758PubMedCrossRefGoogle Scholar
  3. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745PubMedCrossRefGoogle Scholar
  4. Babu RC, Zhang JX, Blum A, Ho THD, Wu R, Nguyen HT (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862CrossRefGoogle Scholar
  5. Ballester V, Granero F, Tabashnik BE, Malvar T, Ferre J (1999) Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant Larvae of the diamondback moth (Plutella xylostella). Appl Environ Microbiol 65:1413–1419PubMedGoogle Scholar
  6. Bandyopadhyay A, Datta K, Zhang J, Yang W, Raychaudhuri S, Miyao M, Datta SK (2007) Enhanced photosynthesis rate in genetically engineered indica rice expressing pepc gene cloned from maize. Plant Sci 172:1204–1209CrossRefGoogle Scholar
  7. Bashir K, Husnain T, Fatira T, Latif Z, Mehdi SA, Riazuddin S (2004) Field evaluation and risk assessment of transgenic indica basmati rice. Mol Breed 13:301–312CrossRefGoogle Scholar
  8. Bates SL, Zhao JZ, Roush RT, Shelton AM (2005) Insect-resistance management in GM crops: past, present and future. Nat Biotechnol 23:57–62PubMedCrossRefGoogle Scholar
  9. Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363PubMedCrossRefGoogle Scholar
  10. Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424PubMedCrossRefGoogle Scholar
  11. Breitler JC, Marfa V, Royer M, Meynard D, Vassal JM, Vercambre B, Frutos R, Messeguer J, Gabarra R, Guiderdoni E (2000) Expression of a Bacillus thuringiensis cry1B synthetic gene protects Mediterranean rice against the striped stem borer. Plant Cell Rep 19:1195–1202CrossRefGoogle Scholar
  12. Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA 101:9909–9914PubMedCrossRefGoogle Scholar
  13. Chaogang S, Jianhua W, Guoying Z, Gang S, Baozhen P, Juanli L, Dendi J, Shenxiang C, Upadhyaya NM, Waterhouse P, Zuxun G (2003) Ectopic expression of the spike protein of rice ragged stunt oryzavirus in transgenic rice plants inhibits transmission of the virus to the insects. Mol Breed 11:295–301CrossRefGoogle Scholar
  14. Chen H, Tang W, Xu CG, Li XH, Lin YJ, Zhang QF (2005) Transgenic indica rice plants harboring a synthetic cry2A* gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests. Theor Appl Genet 111: 1330–1337PubMedCrossRefGoogle Scholar
  15. Chen H, An R, Tang JH, Cui XH, Hao FS, Chen J, Wang XC (2007) Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice. Mol Breeding 19:215–225CrossRefGoogle Scholar
  16. Chen H, Zhang G, Zhang Q, Lin Y (2008) Effect of transgenic Bacillus thuringiensis rice lines on mortality and feeding behavior of rice stem borers (Lepidoptera: Crambidae). J Econ Entomol 101:182–189PubMedCrossRefGoogle Scholar
  17. Chen S, Lin XH, Xu CG, Zhang Q (2000) Improvement of bacterial blight resistance of ‘Minghui 63’, an elite restorer line of hybrid rice, by molecular marker-assisted selection. Crop Sci 40:239–244CrossRefGoogle Scholar
  18. Cheng X, Sardana R, Kaplan H, Altosaar I (1998) Agrobacterium transformed rice plants expressing synthetic cry1Ab and cry1Ac genes are highly toxic to striped stem borer and yellow stem borer. Proc Natl Acad Sci USA 95:2767–2772PubMedCrossRefGoogle Scholar
  19. Cheng ZQ, Targolli J, Huang XQ, Wu R (2002) Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol Breed 10:71–82CrossRefGoogle Scholar
  20. Chipman D, Barak Z, Schloss JV (1998) Biosynthesis of 2-aceto-2-hydroxy acid; cetolactate synthases and acetohydroxyacid synthases. Biochim Biophys Acta 1385:401–419PubMedCrossRefGoogle Scholar
  21. Coca M, Bortolotti C, Rufat M, Penas G, Eritja R, Tharreau D, del Pozo AM, Messeguer J, San Segundo B (2004) Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol Biol 54:245–259PubMedCrossRefGoogle Scholar
  22. Datta K, Datta SK (2006) Indica rice (Oryza sativa, BR29 and IR64). Methods Mol Biol 343:201–212PubMedGoogle Scholar
  23. Datta K, Baisakh N, Thet KM, Tu J, Datta SK (2002) Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight. Theor Appl Genet 106:1–8PubMedGoogle Scholar
  24. Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush GS, Muthukrishnan S, Datta SK (1999) Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor Appl Genet 98:1138–1145CrossRefGoogle Scholar
  25. Datta K, Koukolikova-Nicola Z, Baisakh N, Oliva N, Datta SK (2000) Agrobacterium-mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems. Theor Appl Genet 100:832–839CrossRefGoogle Scholar
  26. Datta SK, Datta K, Soltanifar N, Donn G, Potrykus I (1992) Herbicide resistant indica rice plants from IRRI breeding line IR72 after PEG-mediated transformation of protoplasts. Plant Mol Biol 20:619–629PubMedCrossRefGoogle Scholar
  27. Endo M, Osakabe K, Ono K, Handa H, Shimizu T, Toki S (2007) Molecular breeding of a novel herbicide-tolerant rice by gene targeting. Plant J 52:157–166PubMedCrossRefGoogle Scholar
  28. Escriche B, Ferre J, Silva FJ (1997) Occurrence of a common binding site in Mamestra brassicae, Phthorimaea operculella, and Spodoptera exigua for the insecticidal crystal proteins CryIA from Bacillus thuringiensis. Insect Biochem Mol Biol 27:651–656PubMedCrossRefGoogle Scholar
  29. Espinoza-Esquivel AM, Arrieta-Espinoza G (2007) A multidisciplinary approach directed towards the commercial release of transgenic herbicide-tolerant rice in Costa Rica. Transgenic Res 16:541–555PubMedCrossRefGoogle Scholar
  30. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171PubMedCrossRefGoogle Scholar
  31. Ferré J, Van Rie J (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 47:501–533PubMedCrossRefGoogle Scholar
  32. Foissac X, Loc NT, Christou P, Gatehouse AMR, Gatehouse JA (2000) Resistance to green leafhopper (Nephotettix virescens) and brown planthopper (Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA). J Insect Physiol 46:573–583PubMedCrossRefGoogle Scholar
  33. Frutos R, Rang C, Royer M (1999) Managing insect resistance to plants producing Bacillus thuringiensis toxin. Crit Rev Biotechnol 19:227–276CrossRefGoogle Scholar
  34. Fujimoto H, Itoh K, Yamamoto M, Kyozuka J, Shimamoto K (1993) Insect resistant rice generated by introduction of a modified δ-endotoxin gene of Bacillus thuringiensis. Nat Biotechnol 11:1151–1155CrossRefGoogle Scholar
  35. Fukayama H, Tsuchida H, Agarie S, Nomura M, Onodera H, Ono K, Lee BH, Hirose S, Toki S, Ku MSB, Makino A, Matsuoka Mand, Miyao M (2001) Significant accumulation of C4-specific pyruvate, orthophosphate dikinase in a C3 plant, rice. Plant Physiol 127:1136–1146PubMedCrossRefGoogle Scholar
  36. Fukayama H, Hatch MD, Tamai T, Tsuchida H, Sudoh S, Furbank RT, Miyao M (2003) Activity regulation and physiological impacts of the maize C4-specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants. Photosynth Res 77:227–239PubMedCrossRefGoogle Scholar
  37. Gao J, Chao D, Lin H (2008) Toward understanding molecular mechanisms of abiotic stress responses in rice. Rice 1:36–51CrossRefGoogle Scholar
  38. Gao Z, Zeng D, Cui X, Zhou Y, Yan M, Huang D, Li J, Qian Q (2003) Map-based cloning of the ALK gene, which controls the gelatinization temperature of rice. Sci Chin Ser C 46: 661–668CrossRefGoogle Scholar
  39. Garg AK, Kim JK, Owens TG, Ranwala AP, Do Choi Y, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903PubMedCrossRefGoogle Scholar
  40. Ge LF, Chao DY, Shi M, Zhu MZ, Gao JP, Lin HX (2008) Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 228:191–201PubMedCrossRefGoogle Scholar
  41. Ghareyazie B, Alinia F, Menguito CA, Rubia LG, Palma1 JM, Liwanag EA, Cohen MB, Khush GS, Bennett J (1997) Enhanced resistance to two stem borers in an aromatic rice containing a synthetic cryIA(b) gene. Mol Breed 3:401–414CrossRefGoogle Scholar
  42. Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286PubMedCrossRefGoogle Scholar
  43. Gu K, Sangha JS, Li Y, Yin Z (2008) High-resolution genetic mapping of bacterial blight resistance gene Xa10. Theor Appl Genet 116:155–163PubMedCrossRefGoogle Scholar
  44. Han S, Wu Z, Yang H, Wang R, Yie Y, Xie L, Tien P (2000) Ribozyme-mediated resistance to rice dwarf virus and the transgene silencing in the progeny of transgenic rice plants. Transgenic Res 9:195–203PubMedCrossRefGoogle Scholar
  45. Hayakawa T, Zhu Y, Itoh K, Kimura Y, Izawa T, Shimamoto K, Toriyama S (1992) Genetically engineered rice resistant to rice stripe virus, an insect-transmitted virus. Proc Natl Acad Sci USA 89:9865–9869PubMedCrossRefGoogle Scholar
  46. He P, Li SG, Qian Q, Ma YQ, Li JZ, Wang WM, Chen Y, Zhu LH (1999) Genetic analysis of rice grain quality. Theor Appl Genet 98:502–508CrossRefGoogle Scholar
  47. Hervé P, Kayano T (2006) Japonica rice varieties (Oryza sativa, Nipponbare, and others). Methods Mol Biol 343:213–222PubMedGoogle Scholar
  48. Hibberd JM, Sheehy JE, Langdale JA (2008) Using C4 photosynthesis to increase the yield of rice-rationale and feasibility. Curr Opin Plant Biol 11:228–231PubMedCrossRefGoogle Scholar
  49. Hiei Y, Komari T (2006) Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens. Plant Cell Tiss Organ Cult 85:271–283CrossRefGoogle Scholar
  50. Hiei Y, Komari T (2008) Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc 3:824–834PubMedCrossRefGoogle Scholar
  51. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282PubMedCrossRefGoogle Scholar
  52. High SM, Cohen MB, Shu QY, Altosaar I (2004) Achieving successful deployment of Bt rice. Trends Plant Sci 9:286–292PubMedCrossRefGoogle Scholar
  53. Hirose S, Kawahigashi H, Ozawa K, Shiota N, Inui H, Ohkawa H, Ohkawa Y (2005) Transgenic rice containing human CYP2B6 detoxifies various classes of herbicides. J Agric Food Chem 53:3461–3467PubMedCrossRefGoogle Scholar
  54. Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T (2000) Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Mol Biol 43:103–111PubMedCrossRefGoogle Scholar
  55. Hu HH, Dai MQ, Yao JL, Xiao BZ, Li XH, Zhang QF, Xiong LZ (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992PubMedCrossRefGoogle Scholar
  56. Hu HH, You J, Fang YJ, Zhu XY, Qi ZY, Xiong LZ (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67: 169–181PubMedCrossRefGoogle Scholar
  57. Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush GS (1997) Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet 95:313–320CrossRefGoogle Scholar
  58. Huet H, Mahendra S, Wang J, Sivamani E, Ong C A, Chen L, Kochko AD, Beachy RN, Fauquet C (1999) Near immunity to rice tungro spherical virus achieved in rice by a replicase-mediated resistance strategy. Phytopathology 89:1022–1027PubMedCrossRefGoogle Scholar
  59. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  60. Inui H, Ohkawa H (2005) Herbicide resistance in transgenic plants with mammalian P450 monooxygenase genes. Pest Manage Sci 61:286–291CrossRefGoogle Scholar
  61. Inui H, Shiota N, Ido Y, Hirose S, Kawahigashi H, Ohkawa Y Ohkawa H (2001) Herbicide metabolism and tolerance in the transgenic rice plants expressing human CYP2C9 and CYP2C19. Pest Biochem Physiol 71:156–169CrossRefGoogle Scholar
  62. Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153PubMedCrossRefGoogle Scholar
  63. Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Do Choi Y, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524PubMedCrossRefGoogle Scholar
  64. Jiao D, Huang X, Li X, Chi W, Kuang T, Zhang Q, Ku MSB, Cho D (2002) Photosynthetic characteristics and tolerance to photo-oxidation of transgenic rice expressing C4 photosynthesis enzymes. Photosynth Res 72:85–93PubMedCrossRefGoogle Scholar
  65. Jung S, Back K (2005) Herbicidal and antioxidant responses of transgenic rice overexpressing Myxococcus xanthus protoporphyrinogen oxidase. Plant Physiol Biochem 43:423–430PubMedCrossRefGoogle Scholar
  66. Jung S, Lee Y, Yang K, Lee SB, Jang SM, Ha SB, Back K (2004) Dual targeting of Myxococcus xanthus protoporphyrinogen oxidase into chloroplasts and mitochondria and high level oxyfluorfen resistance. Plant Cell Environ 27:1436–1446CrossRefGoogle Scholar
  67. Kanneganti V, Gupta AK (2008) Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol 66:445–462PubMedCrossRefGoogle Scholar
  68. Kanzaki H, Nirasawa S, Saitoh H, Ito M, Nishihara M, Terauchi R, Nakamura I (2002) Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice. Theor Appl Genet 105:809–814PubMedCrossRefGoogle Scholar
  69. Karim S, Dean DH (2000) Toxicity and receptor binding properties of Bacillus thuringiensis δ-endotoxins to the midgut brush border membrane vesicles of the rice leaf folders, Cnaphalocrocis medinalis and Marasmia patnalis. Curr Microbiol 41:276–283PubMedCrossRefGoogle Scholar
  70. Katiyar-Agarwal S, Agarwal M, Grover A (2003) Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol Biol 51:677–686PubMedCrossRefGoogle Scholar
  71. Kawahigashi H, Hirose S, Hayashi E, Ohkawa H, and Ohkawa Y (2005a) Enhanced herbicide cross-tolerance in transgenic rice plants co-expressing human CYP1A1, CYP2B6, and CYP2C19. Plant Sci 168:773–781CrossRefGoogle Scholar
  72. Kawahigashi H, Hirose S, Ozawa K, Ido Y, Kojima M, Ohkawa H, Ohkawa Y (2005b) Analysis of substrate specificity of pig CYP2B22 and CYP2C49 towards herbicides by transgenic rice plants. Transgenic Res 14:907–917PubMedCrossRefGoogle Scholar
  73. Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2005c) Phytoremediation of metolachlor by transgenic rice plants expressing human CYP2B6. J Agric Food Chem 53:9155–9160PubMedCrossRefGoogle Scholar
  74. Kawahigashi H, Hirose S, Ohkawa, H., Ohkawa Y (2006) Phytoremediation of the herbicides atrazine and metolachlor by transgenic rice plants expressing human CYP1A1, CYP2B6, and CYP2C19. J Agric Food Chem 54:2985–2991PubMedCrossRefGoogle Scholar
  75. Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2007) Herbicide resistance of transgenic rice plants expressing human CYP1A1. Biotechnol Adv 25:75–84PubMedCrossRefGoogle Scholar
  76. Khanna HK, Raina SK (2002) Elite indica transgenic rice plants expressing modified Cry1Ac endotoxin of Bacillus thuringiensis show enhanced resistance to yellow stem borer (Scirpophaga incertulas). Transgenic Res 11:411–423PubMedCrossRefGoogle Scholar
  77. Kim JK, Jang IC, Wu R, Zuo WN, Boston RS, Lee YH, Ahn IP, Nahm BH (2003) Co-expression of a modified maize ribosome inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight. Transgenic Res 12:475–484PubMedCrossRefGoogle Scholar
  78. Kouassi NK, Chen L, Sire C, Bangratz-Reyser M, Beachy RN, Fauquet CM, Brugidou C (2006) Expression of rice yellow mottle virus coat protein enhances virus infection in transgenic plants. Arch Virol 151:2111–2122PubMedCrossRefGoogle Scholar
  79. Krishnamurthy K, Balconi C, Sherwood JE, Giroux MJ (2001) Wheat puroindolines enhance fungal disease resistance in transgenic rice. Mol Plant Microbe Interact 14:1255–1260PubMedCrossRefGoogle Scholar
  80. Krishnan A, Guiderdoni E, An G, Hsing YC, Han C, Lee MC, Yu S-M, Upadhyaya N, Ramachandran S, Zhang Q, Sundaresan V, Hirochika H, Leung H, Pereira A (2009) Mutant Resources in Rice for Functional Genomics of the Grasses. Plant Physiol 149:165–170PubMedCrossRefGoogle Scholar
  81. Ku MSB, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M (1999) High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol 17:76–80PubMedCrossRefGoogle Scholar
  82. Lee HJ, Lee SB, Chung JS, Han SU, Han O, Guh JO, Jeon JS, An G, Back K (2000) Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl ether herbicide oxyfluorfen. Plant Cell Physiol 41:743–749PubMedCrossRefGoogle Scholar
  83. Lee SC, Huh KW, An K, An G, Kim SR (2004) Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b, in transgenic rice (Oryza sativa L.). Mol Cell 18:107–114Google Scholar
  84. Leegood RC (2002) C4 photosynthesis: principles of CO2 concentration and prospects for its introduction into C3 plants. J Exp Bot 53:581–590PubMedCrossRefGoogle Scholar
  85. Lentini Z, Lozano I, Tabares E, Fory L, Dominguez J, Cuervo M, Calvert L (2003) Expression and inheritance of hypersensitive resistance to rice hoja blanca virus mediated by the viral nucleocapsid protein gene in transgenic rice. Theor Appl Genet 106:1018–1026PubMedGoogle Scholar
  86. Li Q (1985) Red Soils in China. China Science, BeijingGoogle Scholar
  87. Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, et al (2003) Control of tillering in rice. Nature 422:618–621PubMedCrossRefGoogle Scholar
  88. Lian HL, Yu X, Ye Q, Ding XS, Kitagawa Y, Kwak SS, Su WA, Tang ZC (2004) The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol 45:481–489PubMedCrossRefGoogle Scholar
  89. Lian X, Xing Y, Yan H, Xu C, Li X, Zhang Q (2005) QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet 112:85–96PubMedCrossRefGoogle Scholar
  90. Lian X, Wang S, Zhang J, Feng Q, Zhang L, Fan D, Li X, Yuan D, Han B, Zhang Q (2006) Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Mol Biol 60:617–631PubMedCrossRefGoogle Scholar
  91. Lin W, Anuratha CS, Datta K, Potrykus I, Muthukrishnan S, Datta SK (1995) Genetic engineering of rice for resistance to sheath blight. Nat Biotechnol 13:686–691CrossRefGoogle Scholar
  92. Lin YJ, Zhang Q (2005) Optimizing the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep 23:540–547PubMedCrossRefGoogle Scholar
  93. Liu X, Lu T, Yu S, Li Y, Huang Y, Huang T, Zhang L, Zhu J, Zhao Q, Fan D, et al (2007) A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies. Plant Mol Biol 65:403–415PubMedCrossRefGoogle Scholar
  94. Lucca P, Hurrell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet 102:392–397CrossRefGoogle Scholar
  95. Ma XJ, Qian Q, Zhu DH (2005) Expression of a calcineurin gene improves salt stress tolerance in transgenic rice. Plant Mol Biol 58:483–495PubMedCrossRefGoogle Scholar
  96. Maqbool SB, Husnain T, Riazuddin S, Masson L, Christou P (1998) Effective control of yellow stem borer and rice leaf folder in transgenic rice indica varieties Basmati 370 and M7 using the novel δ-endotoxin cryIIA Bacillus thuringiensis gene. Mol Breed 6:1–7Google Scholar
  97. Maqbool SB, Riazuddin S, Loc NT, Gatehouse AMR, Gatehouse JA, Christou P (2001) Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol Breed 7:85–93CrossRefGoogle Scholar
  98. Maruthasalam S, Kalpana K, Kumar KK, Loganathan M, Poovannan K, Raja JAJ, Kokiladevi E, Samiyappan R, Sudhakar D, Balasubramanian P (2007) Pyramiding transgenic resistance in elite indica rice cultivars against the sheath blight and bacterial blight. Plant Cell Rep 26:791–804PubMedCrossRefGoogle Scholar
  99. Matsuoka M, Furbank RT, Fukayama H, Miyao M (2001) Molecular engineering of C4 photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 52:297–314PubMedCrossRefGoogle Scholar
  100. Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, Tyagi AK (2002) Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor Appl Genet 106:51–57PubMedGoogle Scholar
  101. Moriwaki T, Yamamoto Y, Aida T, Funahashi T, Shishido T, Asada M, Prodhan SH, Komamine A, Motohashi T (2008) Overexpression of the Escherichia coli catalase gene, katE, enhances tolerance to salinity stress in the transgenic indica rice cultivar, BR5. Plant Biotechnol Rep 2:41–46CrossRefGoogle Scholar
  102. Murakami T, Matsuba S, Funatsuki H, Kawaguchi K, Saruyama H, Tanida M, Sato Y (2004) Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Mol Breed 13:165–175CrossRefGoogle Scholar
  103. Nagadhara D, Ramesh S, Pasalu IC, Rao YK, Krishnaiah NV, Sarma NP, Bown DP, Gatehouse JA, Reddy VD, Rao KV (2003) Transgenic indica rice plants resistant to sap-sucking insects. Plant Biotechnol J 1:231–240PubMedCrossRefGoogle Scholar
  104. Nagadhara D, Ramesh S, Pasalu IC, Kondala Rao Y, Sarma NP, Reddy VD, Rao KV (2004) Transgenic rice plants expressing the snowdrop lectin gene (gna) exhibit high-level resistance to the whitebacked planthopper (Sogatella furcifera). Theor Appl Genet 109:1399–1405PubMedCrossRefGoogle Scholar
  105. Nagamiya K, Motohashi T, Nakao K, Prodhan SH, Hattori E, Hirose S, Ozawa K, Ohkawa Y, Takabe T, Komamine A (2007) Enhancement of salt tolerance in transgenic rice expressing an Escherichia coli catalase gene, katE. Plant Biotechnol Rep 1:49–55CrossRefGoogle Scholar
  106. Nandakumar R, Babu S, Kalpana K, Raguchander T, Balasubramanian P, Samiyappan R (2007) Agrobacterium-mediated transformation of indica rice with chitinase gene for enhanced sheath blight resistance. Biol Plant 51:142–148CrossRefGoogle Scholar
  107. Nayak P, Basu D, Das S, Basu A, Ghosh D, Ramakrishnan NA, Ghosh M, Sen SK (1997) Transgenic elite indica plants expressing cryA(c) δ-endotoxin of Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas). Proc Natl Acad Sci USA 94:2111–2116PubMedCrossRefGoogle Scholar
  108. Nishizawa Y, Nishio Z, Nakazono K, Soma M, Nakajima E, Ugaki M, Hibi T (1999) Enhanced resistance to blast (Magnaporthe grisea) in transgenic Japonica rice by constitutive expression of rice chitinase. Theor Appl Genet 99:383–390PubMedCrossRefGoogle Scholar
  109. Nishizawa Y, Saruta M, Nakazono K, Nishio Z, Soma M, Yoshida T, Nakajima E, Hibi T (2003) Characterization of transgenic rice plants over-expressing the stress-inducible beta-glucanase gene Gns1. Plant Mol Biol 51:143–152PubMedCrossRefGoogle Scholar
  110. Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428PubMedCrossRefGoogle Scholar
  111. Normile D (2006) Consortium aims to supercharge rice photosynthesis. Science 313:423PubMedCrossRefGoogle Scholar
  112. Noury M, Bassie L, Lepri O, Kurek I, Christou P, Capell T (2000) A transgenic rice cell lineage expressing the oat arginine decarboxylase (adc) cDNA constitutively accumulates putrescine in callus and seeds but not in vegetative tissues. Plant Mol Biol 43:537–544PubMedCrossRefGoogle Scholar
  113. Oard JH, Linscombe SD, Braverman MP, Jodari F, Blouin DC, Leech M, Kohli A, Vain P, Cooley JC, Christou, P (1996) Development, field evaluation and agronomic performance of transgenic herbicide resistant rice. Mol Breed 2:359–368CrossRefGoogle Scholar
  114. Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351PubMedCrossRefGoogle Scholar
  115. Ohkawa H, Tsujii H, and Ohkawa Y (1999) The use of cytochrome P450 genes to introduce herbicide tolerance in crops: a review. Pest Sci 55:867–874CrossRefGoogle Scholar
  116. Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–282PubMedCrossRefGoogle Scholar
  117. Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) A new version of Golden Rice with increased pro-Vitamin A content. Nat Biotechnol 23:482–487PubMedCrossRefGoogle Scholar
  118. Pinto YM, Kok RA, Baulcombe DC (1999) Resistance to rice yellow mottle virus (RYMV) in cultivated African rice varieties containing RYMV transgenes. Nat Biotechnol 17:702–707PubMedCrossRefGoogle Scholar
  119. Powell KS, Gatehouse AMR, Hilder VA, Gatehouse JA (1993) Antimetabolic effects of plant lectins and plant and fungal enzymes on the nymphal stages of two important rice pests, Nilaparvata lugens and Nephotettix cinciteps. Entomol Exp Appl 66:119–126CrossRefGoogle Scholar
  120. Powell-Abel P, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743CrossRefGoogle Scholar
  121. Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia mayina in indica Rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17:281–291PubMedCrossRefGoogle Scholar
  122. Qu LQ, Yoshihara T, Ooyama A, Goto F, Takaiwa F (2005) Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds. Planta 222:225–233CrossRefGoogle Scholar
  123. Ramesh S, Nagadhara D, Pasalu IC, Kumari AP, Sarma NP, Reddy VD, Rao KV (2004) Development of stem borer resistant transgenic parental lines involved in the production of hybrid rice. J Biotechnol 111:131–141PubMedCrossRefGoogle Scholar
  124. Rao KV, Rathore KS, Hodges TK, Fu X, Stoger E, Sudhakar D, Williams S, Christou P, Bharathi M, Bown DP, Powell KS, Spence J, Gatehouse AMR, Gatehouse JA (1998) Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant J 15:469–477PubMedCrossRefGoogle Scholar
  125. Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146PubMedCrossRefGoogle Scholar
  126. Rohila JS, Jain RK, Wu R (2002) Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Sci 163:525–532CrossRefGoogle Scholar
  127. Saha P, Dasgupta I, Das S (2006) A novel approach for developing resistance in rice against phloem limited viruses by antagonizing the phloem feeding hemipteran vectors. Plant Mol Biol 62:735–752PubMedCrossRefGoogle Scholar
  128. Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Overexpression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327PubMedCrossRefGoogle Scholar
  129. Sakamoto A, Murata A, Murata N (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38:1011–1019PubMedCrossRefGoogle Scholar
  130. Sanford JC, Johnson SA (1985) The concept of parasite-derived resistance: deriving resistance genes from the parasite own genome. J Theor Biol 115:395–405CrossRefGoogle Scholar
  131. Sato Y, Yokoya S (2008) Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep 27:329–334PubMedCrossRefGoogle Scholar
  132. Sawahel W (2003) Improved performance of transgenic glycinebetaine-accumulating rice plants under drought stress. Biol Plant 47:39–44CrossRefGoogle Scholar
  133. Schaffrath U, Mauch F, Freydl E, Schweizer P, Dudler R (2000) Constitutive expression of the defense-related Rir1b gene in transgenic rice plants confers enhanced resistance to the rice blast fungus Magnaporthe grisea Plant Mol Biol 43:59–66PubMedCrossRefGoogle Scholar
  134. Seo H, Jung Y, Song S, Kim Y, Kwon T, Kim D, Jeung S, Yi Y, Yi G, Nam M, Nam J (2008) Increased expression of OsPT1, a high-affinity phosphate transporter, enhances phosphate acquisition in rice. Biotechnol Lett 30:1833–1838PubMedCrossRefGoogle Scholar
  135. Shao M, Wang J, Dean RA, Lin Y, Gao X, Hu S (2008) Expression of a harpin-encoding gene in rice confers durable nonspecific resistance to Magnaporthe grisea. Plant Biotechnol J 6:73–81PubMedGoogle Scholar
  136. Shirasawa K, Takabe T, Kishitani S (2006) Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress. Ann Bot 98:565–571PubMedCrossRefGoogle Scholar
  137. Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028PubMedCrossRefGoogle Scholar
  138. Shrawat AK, Carroll RT, DePauw M, Taylor GJ, Good AG (2008) Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol J 6:722–732PubMedCrossRefGoogle Scholar
  139. Sivamani E, Huet H, Shen P, Ong CA, Kochko AD, Fauquet C, Beachy RN (1999) Rice plants (Oryza sativa L.) containing rice tungro spherical virus (RTSV) coat protein transgenes are resistant to virus infection. Mol Breed 5:177–185CrossRefGoogle Scholar
  140. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630PubMedCrossRefGoogle Scholar
  141. Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941–948CrossRefGoogle Scholar
  142. Su J, Hirji R, Zhang L, He CK, Selvaraj G, Wu R (2006) Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. J Exp Bot 57:1129–1135PubMedCrossRefGoogle Scholar
  143. Sun X, Wu A, Tang K (2002) Transgenic rice lines with enhanced resistance to the small brown plant hopper. Crop Prot 21:511–514CrossRefGoogle Scholar
  144. Suzuki S, Murai N, Burnell JN, Arai M (2000) Changes in photosynthetic carbon flow in transgenic rice plants that express C4-type phosphoenolpyruvate carboxykinase from Urochloa panicoides. Plant Physiol 124:163–172PubMedCrossRefGoogle Scholar
  145. Suzuki S, Murai N, Kasaoka K, Hiyoshi T, Imaseki H, Burnell JN, Arai M (2006) Carbon metabolism in transgenic rice plants that express phosphoenolpyruvate carboxylase and/or phosphoenolpyruvate carboxykinase. Plant Sci 170:1010–1019CrossRefGoogle Scholar
  146. Tabuchi M, Abiko T, Yamaya T (2007) Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). J Exp Bot 58:2319–2327PubMedCrossRefGoogle Scholar
  147. Takesawa T, Ito M, Kanzaki H, Kameya N, Nakamura I (2002) Over-expression of zeta glutathione S-transferase in transgenic rice enhances germination and growth at low temperature. Mol Breed 9:93–101CrossRefGoogle Scholar
  148. Takeuchi Y, Akagi H, Kamasawa N, Osumi M, Honda H (2000) Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme. Planta 211:265–274PubMedCrossRefGoogle Scholar
  149. Tan YF, Li JX, Yu SB, Xing YZ, Xu CG, Zhang Q (1999) The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63. Theor Appl Genet 99:642–648PubMedCrossRefGoogle Scholar
  150. Tan YF, Xing YZ, Li JX, Yu SB, Xu CG, Zhang Q (2000) Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor Appl Genet 101:823–829CrossRefGoogle Scholar
  151. Tang W, Chen H, Xu CG, Li XH, Lin YJ, Zhang QF (2006) Development of insect-resistant transgenic indica rice with a synthetic cry1C* gene. Mol Breed 18:1–10CrossRefGoogle Scholar
  152. Taniguchi Y, Ohkawa H, Masumoto C, Fukuda T, Tamai T, Lee K, Sudoh S, Tsuchida H, Sasaki H, Fukayama H, Miyao M (2008) Overproduction of C4 photosynthetic enzymes in transgenic rice plants: an approach to introduce the C4-like photosynthetic pathway into rice. J Exp Bot 59:1799–1809PubMedCrossRefGoogle Scholar
  153. Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20:1030–1034PubMedCrossRefGoogle Scholar
  154. Terada R, Johzuka-Hisatomi Y, Saitoh M, Asao H, Iida S (2007) Gene targeting by homologous recombination as a biotechnological tool for rice functional genomics Plant Physiol 144:846–856PubMedCrossRefGoogle Scholar
  155. The Rice Annotation Project (2007) Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res 17:175–183CrossRefGoogle Scholar
  156. The Rice Annotation Project Consortium (2008) The Rice Annotation Project Database (RAP-DB): 2008 update. Nucleic Acids Res 36: D1028–D1033CrossRefGoogle Scholar
  157. The Rice Full-Length cDNA Consortium (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376–379CrossRefGoogle Scholar
  158. Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H (2006) Early infection of scutellum tissue with Agrobacterium allows highspeed transformation of rice. Plant J 47:969–976PubMedCrossRefGoogle Scholar
  159. Tsuchida H, Tamai T, Fukayama H, Agarie S, Nomura M, Onodera H, Ono K, Nishizawa Y, Lee B, Hirose S, et al (2001) High level expression of C4-specific NADP-malic enzyme in leaves and impairment of photoautotrophic growth of a C3 plant, rice. Plant Cell Physiol 42:138–145PubMedCrossRefGoogle Scholar
  160. Tu J, Datta K, Khush GS, Zhang Q, Datta SK (2000a) Field performance of Xa21 transgenic indica rice (Oryza sativa L.), IR72. Theor Appl Genet 101:15–20CrossRefGoogle Scholar
  161. Tu JM, Zhang GA, Data K, Xu CG, He YQ, Zhang QF, Khush GS, Datta SK (2000b) Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin. Nat Biotechnol 18:1101–1104PubMedCrossRefGoogle Scholar
  162. Tyagi H, Rajasubramaniam S, Rajam MV, Dasgupta I (2008) RNA-interference in rice against Rice tungro bacilliform virus results in its decreased accumulation in inoculated rice plants. Transgenic Res 17:897–904PubMedCrossRefGoogle Scholar
  163. Van Loon LC, Van Sterin EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97CrossRefGoogle Scholar
  164. Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447CrossRefGoogle Scholar
  165. Vasconcelos M, Datta K, Oliva N, Khalekuzzaman M, Torrizo L, Krishnan S, Olivera M, Goto F, Datta SK (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164:371–378CrossRefGoogle Scholar
  166. Verma D, Singla-Pareek SL, Rajagopal D, Reddy MK, Sopory SK (2007) Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J Biosci 32:621–628PubMedCrossRefGoogle Scholar
  167. Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132PubMedCrossRefGoogle Scholar
  168. Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472PubMedCrossRefGoogle Scholar
  169. Wang LQ, Liu WJ, Xu YB, He YQ, Luo LJ, Xing YZ, Xu CG, Zhang Q (2007) Genetic basis of 17 traits and viscosity parameters characterizing the eating and cooking quality of rice grain. Theor Appl Genet 115:463–476PubMedCrossRefGoogle Scholar
  170. Wang QY, Guan YC, Wu YR, Chen HL, Chen F, Chu CC (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602PubMedCrossRefGoogle Scholar
  171. Wang ZY, Wu ZL, Xing YY, Zheng FQ, Guo XL, Zhang WG, Hong MM (1990) Nucleotide sequence of rice Waxy gene. Nucleic Acids Res 18:5898PubMedCrossRefGoogle Scholar
  172. Wissuwa M, Ae N (2001a) Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvement. Plant Breed 120:43–48CrossRefGoogle Scholar
  173. Wissuwa M, Ae N (2001b) Further characterization of two QTLs that increase phosphorus uptake of rice (Oryza sativa L.) under phosphorus deficiency. Plant Soil 237:275–286CrossRefGoogle Scholar
  174. Wu C, Fan Y, Zhang C, Oliva N, Datta SK. 1997. Transgenic fertile japonica rice plants expressing a modified cryIA(b) gene resistant to yellow stem borer. Plant Cell Rep 17:129–132CrossRefGoogle Scholar
  175. Wünn J, Kloti A, Burkhardt PK, Biswas GCG, Launis K, Iglesias VA, Potrykus I (1996) Transgenic indica rice breeding line IR58 expressing a synthetic cry1A(b) gene from Bacillus thuringiensis provides effective insect pest control. Nat Biotechnol 14:171–176CrossRefGoogle Scholar
  176. Xiang Y, Huang Y, Xiong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144:1416–1428PubMedCrossRefGoogle Scholar
  177. Xiao BZ, Huang YM, Tang N, Xiong LZ (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35–46PubMedCrossRefGoogle Scholar
  178. Xie K, Zhang J, Xiang Y, Feng Q, Han B, Chu Z, Wang, S, Zhang, Q, Xiong L (2005) Isolation and annotation of 10828 putative full length cDNAs from indica rice. Sci Chin Ser C Life Sci 48:445–451CrossRefGoogle Scholar
  179. Xiong LZ, Yang YN (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759PubMedCrossRefGoogle Scholar
  180. Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257PubMedGoogle Scholar
  181. Xu DQ, Huang J, Guo SQ, Yang X, Bao YM, Tang HJ, Zhang HS (2008) Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett 582:1037–1043PubMedCrossRefGoogle Scholar
  182. Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708PubMedCrossRefGoogle Scholar
  183. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, et al (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767PubMedCrossRefGoogle Scholar
  184. Yamaya T, Obara M, Nakajima H, Sasaki S, Hayakawa T, Sato T (2002) Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J Exp Bot 53:917–925PubMedCrossRefGoogle Scholar
  185. Ye GY, Shu QY, Yao HW, Cui HR, Cheng XY, Hu C, Xia YW, Gao MW, Altosaar I (2001) Field evaluation of resistance of transgenic rice containing a synthetic cry1Ab gene from Bacillus thuringiensis Berliner to two stem borers. J Econ Entomol 94:271–276PubMedCrossRefGoogle Scholar
  186. Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the pro-vitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305PubMedCrossRefGoogle Scholar
  187. Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138:2087–2096PubMedCrossRefGoogle Scholar
  188. Yokoi S, Higashi S, Kishitani S, Murata N, Toriyama K (1998) Introductionof the cDNA for Arabidopsis glycerol-3-phosphate acyltransferase (GPAT) confers unsaturation of fatty acids and chilling tolerance of photosynthesis on rice. Mol Breed 4:269–275CrossRefGoogle Scholar
  189. Zhang J, Li X, Jiang G, Xu Y, He Y (2006) Pyramiding of Xa7 and Xa21 for the improvement of disease resistance to bacterial blight in hybrid rice. Plant Breed 125:600–605CrossRefGoogle Scholar
  190. Zhang Q (2007) Strategies for developing green super rice. Proc Natl Acad Sci USA 104:16402–16409PubMedCrossRefGoogle Scholar
  191. Zhang Q, Li J, Xue Y, Han B, Deng XW (2008) Rice 2020: A call for an international coordinated effort in rice functional genomics. Mol Plant 1:715–719PubMedCrossRefGoogle Scholar
  192. Zhao F, Wang Z, Zhang Q, Zhao Y, Zhang H (2006a) Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H+ antiporter gene from Suaeda salsa. J Plant Res 119:95–104PubMedCrossRefGoogle Scholar
  193. Zhao F, Zhang X, Li P, Zhao Y, Zhang H (2006b) Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1. Mol Breed 17:341–353CrossRefGoogle Scholar
  194. Zhao JZ, Cao J, Li YX, Collins HL, Roush RT, Earle ED, Shelton AM (2003) Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21:1493–1497PubMedCrossRefGoogle Scholar
  195. Zhou PH, Tan YF, He YQ, Xu CG, Zhang Q (2003) Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theor Appl Genet 106:326–331PubMedGoogle Scholar
  196. Zhou Y, Cai H, Xiao J, Li X, Zhang Q, X Lian (2009) Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds. Theor Appl Genet 118:1381–1390. doi: 10.1007/s0012200909883PubMedCrossRefGoogle Scholar
  197. Zhu B, Su J, Chang M, Verma DPS, Fan YL, Wu R (1998) Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water- and salt-stress in transgenic rice. Plant Sci 139:41–48CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina

Personalised recommendations