• Christian MöllersEmail author
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 64)


Oilseed rape or canola (Brassica napus L.) is the major oilseed crop in temperate regions. It ranks second among oilseed crops produced worldwide and ranks fourth in the list of the worldwide most widely cultivated transgenic crops. This chapter critically reviews current aspects and progress of oilseed rape transformation technology, employment of transgenic oilseed rape in breeding programmes and in crop production. It summarizes transgenic traits used in commercial production and those which are currently being evaluated in field trials.


Oilseed Rape Brassica Species Selectable Marker Gene Binary Plasmid Winter Oilseed Rape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. AGBIOS (2008) GM database. Accessed 17 Nov 2008
  2. Amar S, Becker HC, Möllers C (2008) Genetic variation and genotype x environment interactions of phytosterol content in three doubled haploid populations of winter rapeseed. Crop Sci 48:1000–1006CrossRefGoogle Scholar
  3. Beckie HJ, Harker KN, Hall LM, Warwick SI, Légère A, Sikkema PH, Clayton GW, Thomas AG, Leeson JY, Séguin-Swartz G, Simard M-J (2006) A decade of herbicide-resistant crops in Canada. Can J Plant Sci 86:1243–1264CrossRefGoogle Scholar
  4. Bhalla PL, Singh MB (2008) Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nat Protoc 3:181–189PubMedCrossRefGoogle Scholar
  5. Bock R (2007) Plasmid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18:100–106PubMedCrossRefGoogle Scholar
  6. Canadian Food Inspection Agency (2008) Detailed table for 2007 confined field trials. Accessed 17 Nov 2008
  7. Cao MQ, Liu F, Yao L, Bouchez D, Tourneur C, Li Y, Robaglia C (2000) Transformation of pakchoi (Brassica rapa L. ssp. chinensis) by Agrobacterium infiltration. Mol Breed 6:67–72CrossRefGoogle Scholar
  8. Cardoza V, Stewart CN (2003) Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep 21:599–604PubMedGoogle Scholar
  9. Cardoza V, Stewart NC (2006) Canola (Brassica napus L.). In: Wang K (ed) Methods in molecular biology, vol 343. Humana, Totowa, N.J., pp 257–266Google Scholar
  10. Cardoza V, Stewart NC (2007) Canola. In: Pua EC, Davey MR (eds) Biotechnology in agriculture and forestry, vol 61. Transgenic crops VI. Springer, Heidelberg, pp 29–37Google Scholar
  11. Chakraborti D, Sarkar A, Mondal HA, Schuermann D, Hohn B, Sarmah BK, Das S (2008) Cre/lox system to develop selectable marker free transgenic tobacco plants conferring resistance against sap sucking homopteran insect. Plant Cell Rep 27:1623–1633PubMedCrossRefGoogle Scholar
  12. Charest PJ, Holbrook LA, Gabard J, Iyer VN, Miki BL (1988) Agrobacterium-mediated transformation of thin cell layer explants from Brassica napus L. Theor Appl Genet 75:438–445CrossRefGoogle Scholar
  13. Crosbie TM, Eathington SR, Johnson GR, Edwards M, Reiter R, Stark S, Mohanty RG, Oyervides M, Buehler RE, Walker AK, Dobert R, Delanny X, Pershing JC, Hall MA, Lamkey K (2006) Plant breeding: past, present, and future. In: Lamkey KR, Lee M (eds) The Arnel R. Hallauer international symposium. Blackwell, Oxford, pp 3–50Google Scholar
  14. Curtis IS, Nam HG (2001) Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral dip method – plant development and surfactant are important in optimizing transformation efficiency. Transgenic Res 10:363–371PubMedCrossRefGoogle Scholar
  15. Daley M, Knauf VC, Summerfelt KR, Turner JC (1998) Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep 17:489–496CrossRefGoogle Scholar
  16. Damgaard O, Jensen LH, Rasmussen OS (1997) Agrobacterium tumefaciens-mediated transformation of Brassica napus winter cultivars. Transgenic Res 6:279–288CrossRefGoogle Scholar
  17. De Block M, Debrouwer D (1991) Two T-DNA's cotransformed into Brassica napus by double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor Appl Genet 82:257–263CrossRefGoogle Scholar
  18. De Block M, De Brouwer D, Tenning P (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of bar and neo genes in transgenic plants. Plant Physiol 91:694–701PubMedCrossRefGoogle Scholar
  19. De Vetten N, Wolters AM, Raemakers K, Van der Meer I, Ter Stege R, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442PubMedCrossRefGoogle Scholar
  20. Dunwell JM (2005) Transgenic crops: the current and next generations. In: Peña L (ed) Methods in molecular biology, vol 286. Humana, Totowa, N.J., pp 377–298Google Scholar
  21. Durrett T, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54:593–607PubMedCrossRefGoogle Scholar
  22. FAO (2008) ProdSTAT. Food and Agriculture Organization of the United Nations, Rome. Accessed 17 Nov 2008
  23. Fry J, Barnason A, Horsch RB (1987) Transformation of Brassica napus with Agrobacterium tumefaciens based vectors. Plant Cell Rep 6:321–325CrossRefGoogle Scholar
  24. Fu X, Tan Duc L, Fontana S, Bong BB, Tinjuangjun P, Sudhakar D, Twyman RM, Christou P, Kohli A (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res 9:11–19PubMedCrossRefGoogle Scholar
  25. Fukuoka H, Ogawa T, Matsuoka M, Ohkawa Y, Yano H (1998) Direct gene delivery into isolated microspores of rapeseed (Brassica napus L.) and the production of fertile transgenic plants. Plant Cell Rep 17:323–328CrossRefGoogle Scholar
  26. GMO Compass (2008) GMO database. Accessed 17 Nov 2008
  27. Hausmann L, Töpfer R (1999) Entwicklung von Plasmid-Vektoren. Vortr Pflanzenzuecht 45:155–171Google Scholar
  28. Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301PubMedGoogle Scholar
  29. Hou BK, Zhou YH, Wan LH, Zhang ZL, Shen GF, Chen ZH, Hu ZM (2003) Chloroplast transformation in oilseed rape. Transgenic Res 12:115–122CrossRefGoogle Scholar
  30. Houmiel KL, Slater S, Broyles D, Casagrande L, Colburn S, Gonzalez K, Mitsky TA, Reiser SE, Shah D, Taylor NB, Tran M, Valentin HE and Gruys KJ (1999) Poly(β-hydroxybutyrate) production in oilseed leukoplasts of Brassica napus. Planta 209:547–550PubMedCrossRefGoogle Scholar
  31. Hüsken A, Baumert A, Strack D, Becker HC, Möllers C, Milkowski C (2005a) Reduction of sinapate ester content in transgenic oilseed rape (Brassica napus L.) by dsRNAi-based suppression of BnSGT1 gene expression. Mol Breed 16:127–138CrossRefGoogle Scholar
  32. Hüsken A, Baumert A, Milkowski C, Becker HC, Strack D, Möllers C (2005b) Resveratrol glucoside (Piceid) synthesis in seeds of transgenic oilseed rape (Brassica napus L.). Theor Appl Genet 111:1553–1562PubMedCrossRefGoogle Scholar
  33. ISAAA (2008) Global status of commercialized biotech/GM crops: 2007. ISAAA Briefs 37. The International Service for the Acquisition of Agri-Biotech Applications, London. Accessed 17 Nov 2008
  34. ISB (2008) Databases of US and international field tests of GMOs. Information Systems for Biotechnology, Washington, D.C. Accessed 17 Nov 2008
  35. Kuvshinov V, Koivu K, Kanerva A, Pehu E (1999) Agrobacterium tumefaciens-mediated transformation of greenhouse-grown Brassica rapa ssp. oleifera. Plant Cell Rep 18:773–777CrossRefGoogle Scholar
  36. Liu CW, Tseng MJ, Lin CC, Chen JW (2007) Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Rep 26:1733–1744PubMedCrossRefGoogle Scholar
  37. Liu CW, Lin CC, Yiu JC, Chen JJW, Tseng MJ (2008a) Expression of a Bacillus thuringiensis toxin (cry1Ab) gene in cabbage (Brassica oleracea L. var. capitata L.) chloroplasts confers high insecticidal efficacy against Plutella xylostella. Theor Appl Genet 117:75–88PubMedCrossRefGoogle Scholar
  38. Liu CW, Lin CC, Yiu JC, Chen JJW, Tseng MJ (2008b) Expression of a Bacillus thuringiensis toxin (cry1Ab) gene in cabbage (Brassica oleracea L. var. capitata L.) chloroplasts confers high insecticidal efficacy against Plutella xylostella. [Erratum, Theor Appl Genet 117:75–88.] Theor Appl Genet 117:829CrossRefGoogle Scholar
  39. Liu F, Cao MQ, Yao L, Robaglia C, Tourneur C (1998) In planta transformation of pakchoi (Brassica campestris L. ssp. chinensis) by infiltration of adult plants with Agrobacterium. Acta Hortic 467:187–192Google Scholar
  40. Marwede V, Schierholt A, Möllers C, Becker HC (2004) Genotype x environment interactions and heritability of tocopherols content in canola. Crop Sci 44:728–731CrossRefGoogle Scholar
  41. McCormac AC, Fowler MR, Chen D-F, Elliott MC (2001) Efficient co-transformation of Nicotiana tabacum by two independent T-DNAs, the effect of T-DNA size and implications for genetic separation. Transgenic Res 10:143–155PubMedCrossRefGoogle Scholar
  42. Möllers C, Iqbal MCM (2008) Doubled haploids in breeding winter oilseed rape. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Dordrecht, pp 161–169Google Scholar
  43. Moloney MM, Walker JM, Sharma KK (1989) High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep 8:238–242CrossRefGoogle Scholar
  44. Nath UK, Wilmer JA, Wallington EJ, Becker HC, Möllers C (2009) Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAAT+Bn-fae1 transgenes in rapeseed (Brassica napus L.). Theor Appl Genet 118:765–773PubMedCrossRefGoogle Scholar
  45. Nugent GD, Coyne S, Nguyen TT, Kavanagh TA, Dix PJ (2006) Nuclear and plastid transformation of Brassica oleracea var. botrytis (cauliflower) using PEG-mediated uptake of DNA into protoplasts. Plant Sci 170:135–142CrossRefGoogle Scholar
  46. Ovesná J, Ptacek L, Opartny Z (1993) Factors influencing the regeneration capacity of oilseed rape and cauliflower in transformation experiments. Biol Plant 35:107–112CrossRefGoogle Scholar
  47. Pechan PM (1989) Successful cocultivation of Brassica napus microspores and proembryos with Agrobacterium. Plant Cell Rep 8:387–390CrossRefGoogle Scholar
  48. Ponstein AS, Bade JB, Verwoerd TC, Molendijk L, Storms J, Beudeker RF, Pen J (2002) Stable expression of phytase (phyA) in canola (Brassica napus) seeds: towards a commercial product. Mol Breed 10:31–44CrossRefGoogle Scholar
  49. Pua E-C, Mehra-Palta A, Nagy F, Chua N-H (1987) Transgenic plants of Brassica napus L. Bio/Technology 5:815–817CrossRefGoogle Scholar
  50. Radke SE, Andrews BM, Moloney MM, Crouch ML, Kridl JC, Knauf VC (1988): Transformation of Brassica napus L. using Agrobacterium tumefaciens: developmentally regulated expression of a reintroduced napin gene. Theor Appl Genet 75:685–694CrossRefGoogle Scholar
  51. Rahman MH (2001) Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breed 120:463–472CrossRefGoogle Scholar
  52. Seiffert B, Zhou Z, Wallbraun M, Lohaus G, Möllers C (2004) Expression of a bacterial asparagine synthetase gene in oilseed rape (Brassica napus) and its effect on traits related to nitrogen efficiency. Physiol Plant 121: 656–665CrossRefGoogle Scholar
  53. Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401–412PubMedCrossRefGoogle Scholar
  54. Sonntag K, Wang Y, Wallbraun M (2004) A transformation method for obtaining marker-free plants based on phosphomannose isomerase. Acta Univ Latv Biol 676:223–226Google Scholar
  55. Strange A, Park J, Bennett R, Phipps R (2008) The use of life-cycle assessment to evaluate the environmental impacts of growing genetically modified, nitrogen use-efficient canola. Plant Biotechnol J 6:337–345PubMedCrossRefGoogle Scholar
  56. Swanson EB, Erickson LR (1989) Haploid transformation of Brassica napus using an octopine-producing strain of Agrobacterium tumefaciens. Theor Appl Genet 78:831–835Google Scholar
  57. Tan S, Evans R, Singh B (2006) Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino Acids 30:195–204PubMedCrossRefGoogle Scholar
  58. Thomzik RE, Hain R (1990) Transgenic Brassica napus plants obtained by cocultivation of protoplasts with Agrobacterium tumefaciens. Plant Cell Rep 9:233–236CrossRefGoogle Scholar
  59. Ülker B, Li Y, Rosso MG, Logemann E, Somssich IE, Weisshaar B (2008) T-DNA-mediated transfer of Agrobacterium tumefaciens chromosomal DNA into plants. Nat Biotechnol 26:1015–1017PubMedCrossRefGoogle Scholar
  60. Wang WC, et al (2003) Development of a novel Agrobacterium-mediated transformation method to recover transgenic Brassica napus plants. Plant Cell Rep 22:274–281PubMedCrossRefGoogle Scholar
  61. Wang YP, Sonntag K, Rudloff E, Han J (2005) Production of fertile transgenic Brassica napus by Agrobacterium-mediated transformation of protoplasts. Plant Breed 124:1–4CrossRefGoogle Scholar
  62. Wijesekara KB (2007) Development of a haploid transformation system and overexpression of Phytochrome B gene in Brassica napus L. Dissertation, Georg-August-Universität Göttingen, Göttingen. Available at Google Scholar
  63. Xu H, Wang X, Zhao H, Liu F (2008) An intensive understanding of vacuum infiltration transformation of pakchoi (Brassica rapa ssp. chinensis). Plant Cell Rep 27:1369–1376PubMedCrossRefGoogle Scholar
  64. Zhang Y, Singh MB, Swoboda I, Bhalla PL (2005) Agrobacterium-mediated transformation and generation of male sterile lines of Australian canola. Aust J Agric Res 56:353–361CrossRefGoogle Scholar
  65. Zum Felde T, Becker HC, Möllers C (2006) Genotype x environment interactions, heritability, and trait correlations of sinapate ester content in winter rapeseed (Brassica napus L.). Crop Sci 46:2195–2199CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Crop Sciences, Plant BreedingGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations