Advertisement

Potato

  • Jens LübeckEmail author
Chapter
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 64)

Abstract

During the past 20 years, since potato became transformable, potato transgenic research mainly focused on fundamental aspects of plant molecular physiology or molecular genetics using the potato as a model system. But there are also striking achievements with regard to commercially relevant and useful traits. This chapter highlights some examples of how genetic engineering has been used to address the increasing worldwide demands for potato varieties with higher resistance to pests, improved tuber quality, more nutritional value, and an enhanced capacity for the production of (new) biopolymers.

Keywords

Colorado Potato Beetle Transgenic Potato Spider Silk Potato Tuber Moth Vacuolar Invertase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amir R, Hacham Y, Galili G (2002) Cystathionine gamma-synthase and threonine synthase operate in concert to regulate carbon flow towards methionine in plants. Trends Plant Sci 7:153–156PubMedCrossRefGoogle Scholar
  2. Bachem CWB, Speckmann GJ, van der Linde PCG, Verheggen FTM, Hunt MD, Steffens JC, Zabeau M (1994) Antisense expression of polyphenol oxidase genes inhibits enzymatic browning in potato tubers. Bio/Technology 12:1101–1105CrossRefGoogle Scholar
  3. Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326PubMedCrossRefGoogle Scholar
  4. Bohmert K, Balbo I, Kopka J, Mittendorf V, Nawrath C, Poirier Y, Tischendorf G, Trethewey R, Willmitzer L (2000) Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4% of their fresh weight. Planta 211:841–845PubMedCrossRefGoogle Scholar
  5. Bohmert K, Balbo I, Steinbüchel A, Tischendorf G, Willmitzer L (2002) Constitutive expression of the beta-ketothiolase gene in transgenic plants. A major obstacle for obtaining polyhydroxybutyrate-producing plants. Plant Physiol 128:1282–1290PubMedCrossRefGoogle Scholar
  6. Bradshaw JE, Bryan GJ, Ramsay G (2006) Genetic resources (including wild and cultivated Solanum species) and progress in their utilisation in potato breeding. Potato Res 49:49–65CrossRefGoogle Scholar
  7. Bub A, Möseneder J, Wenzel G, Rechkemmer G, Briviba K (2008) Zeaxanthin is bioavailable from genetically modified zeaxanthin-rich potatoes. Eur J Nutr 47:99–103PubMedCrossRefGoogle Scholar
  8. Burton WG (1969) The sugar balance in some British potato varieties during storage. II. The effects of tuber age, previous storage temperature, and intermittent refrigeration upon low-temperature sweetening. Eur Potato J 12:81–95CrossRefGoogle Scholar
  9. Chakraborty S, Chakraborty N, Datta A (2000) Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proc Natl Acad Sci USA 97:3724–3729PubMedCrossRefGoogle Scholar
  10. Chen S, Hajirezaei MR, Zanor MI, Hornyik C, Debast S, Lacomme C, Fernie AR, Sonnewald U, Börnke F (2008) RNA interference-mediated repression of sucrose-phosphatase in transgenic potato tubers (Solanum tuberosum) strongly affects the hexose-to-sucrose ratio upon cold storage with only minor effects on total soluble carbohydrate accumulation. Plant Cell Environ 31:165–176PubMedCrossRefGoogle Scholar
  11. Coetzer C, Corsini D, Love S, Pavek J, Tumer N (2001) Control of enzymatic browning in potato (Solanum tuberosum L.) by sense and antisense RNA from tomato polyphenol oxidase. J Agr Food Chem 49:652–657CrossRefGoogle Scholar
  12. Dancs G, Kondrák M, Bánfalvi Z (2008) The effects of enhanced methionine synthesis on amino acid and anthocyanin content of potato tubers. BMC Plant Biol 8:65. doi:10.1186/1471-2229-8-65PubMedCrossRefGoogle Scholar
  13. Davidson MM, Butler RC, Wratten SD, Conner AJ (2004) Resistance of potatoes transgenic for a cry1Ac9 gene, to Phthorimaea operculella (Lepidoptera: Gelechiidae) over field seasons and between plant organs. Ann Appl Biol 145:271–277CrossRefGoogle Scholar
  14. DePolo J (2007) A tuber with international impact. Fut Mag 24:8–12Google Scholar
  15. de Wit PJGM (1992) Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annu Rev Phytopathol 30:391–418PubMedCrossRefGoogle Scholar
  16. Di R, Kim J, Martin MN, Leustek T, Jhoo J, Ho CT, Tumer NE (2003) Enhancement of the primary flavor compound methional in potato by increasing the level of soluble methionine. J Agric Food Chem 51:5695–5702PubMedCrossRefGoogle Scholar
  17. Diretto G, Tavazza R, Welsch R, Pizzichini D, Mourgues F, Papacchioli V, Beyer P, Giuliano G (2006) Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol 6:13. doi:10.1186/1471-2229-6-13PubMedCrossRefGoogle Scholar
  18. Diretto G, Welsch R, Tavazza R, Mourgues F, Pizzichini D, Beyer P, Giuliano G (2007a) Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers. BMC Plant Biol 7:11. doi:10.1186/1471-2229-7-11PubMedCrossRefGoogle Scholar
  19. Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P, et al (2007b) Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS ONE 2:e350. doi:10.1371/journal.pone.0000350CrossRefGoogle Scholar
  20. Ducreux LJ, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, Taylor MA (2005) Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein. J Exp Bot 56:81–89PubMedGoogle Scholar
  21. Estrada MA, Zarka K, Cooper S, Coombs J, Douches DS, Grafius EJ (2007) Potato tuberworm (lepidoptera: gelichiidae) resistance in potato lines with the Bacillus thuringiensis cry1Ac gene and natural resistance. HortScience 42:1306–1311Google Scholar
  22. Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296CrossRefGoogle Scholar
  23. Friedman M (1997) Chemistry, biochemistry, and dietary role of potato polyphenols. A review. J Agr Food Chem 45:1523CrossRefGoogle Scholar
  24. Fry WE (2008) Phytophthora infestans, the plant (and R gene) destroyer. Mol Plant Pathol 9:385–402PubMedCrossRefGoogle Scholar
  25. Garelik G (2002) Taking the bite out of potato blight. Science 298:1702–1704PubMedCrossRefGoogle Scholar
  26. Gargouri-Bouzid R, Jaoua L, Rouis S, Saïdi MN, Bouaziz D, Ellouz R (2006) PVY-resistant transgenic potato plants expressing an anti-NIa protein scFv antibody. Mol Biotechnol 33:133–140PubMedCrossRefGoogle Scholar
  27. Gerjets T, Sandmann G (2006) Ketocarotenoid formation in transgenic potato. J Exp Bot 57:3639–3645PubMedCrossRefGoogle Scholar
  28. Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor MA (2008) Metabolic engineering of carotenoid biosynthesis in plants. Trends Biotechnol 26:139–145PubMedCrossRefGoogle Scholar
  29. Golan A, Matityahu I, Avraham T, Badani H, Galili S, Amir R (2005) Soluble methionine enhances accumulation of a 15 kDa zein, a methionine-rich storage protein, in transgenic alfalfa but not in transgenic tobacco plants. J Exp Bot 56:2443–2452CrossRefGoogle Scholar
  30. Gosline JM, Guerette PA, Ortlepp CS, Savage KN (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202:3295–3303PubMedGoogle Scholar
  31. Greiner S, Rausch T, Sonnewald U, Herbers K (1999) Ectopic expression of a tobacco invertase inhibitor homolog prevents cold-induced sweetening of potato tubers. Nat Biotechnol 17:708–711PubMedCrossRefGoogle Scholar
  32. Hacham Y, Schuster G, Amir R (2006) An in vivo internal deletion in the N-terminus region of Arabidopsis cystathionine γ-synthase results in CGS expression that is insensitive to methionine. Plant J 45:955–967PubMedCrossRefGoogle Scholar
  33. Halterman DA, Colton Kramer L, Wielgus S, Jiang J (2008) Performance of transgenic potato containing the late blight resistance gene RB. Plant Dis 92:339–343CrossRefGoogle Scholar
  34. Hayashi CY, Shipley NH, Lewis RV (1999) Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int J Biol Macromol 24:271–275PubMedCrossRefGoogle Scholar
  35. Hellwege EM, Czapla S, Jahnke A, Willmitzer L, Heyer AG (2000) Transgenic potato (Solanum tuberosum) tubers synthesize the full spectrum of inulin molecules naturally occurring in globe artichoke (Cynara scolymus) roots. Proc Natl Acad Sci USA 97:8699–8704PubMedCrossRefGoogle Scholar
  36. Herrera-Estrella L, Depicker A, van Montagu M, Schell J (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303:209–213CrossRefGoogle Scholar
  37. Hesse H, Kreft O, Maimann S, Zeh M, Hoefgen R (2004) Current understanding of the regulation of methionine biosynthesis in plants. J Exp Bot 55:1799–1808PubMedCrossRefGoogle Scholar
  38. Hils U, Pieterse L (2007) World catalogue of potato varieties. Agrimedia, BergenGoogle Scholar
  39. Hofvander P, Persson PT, Tallberg A, Wikström O (1992). Genetically engineered modification of potato to form amylopectin-type starch. PCT Patent Application WO 92/11376Google Scholar
  40. Hühns M, Neumann K, Hausmann T, Ziegler K, Klemke F, Kahmann U, Staiger D, Lockau W, Pistorius EK, Broer I (2008) Plastid targeting strategies for cyanophycin synthetase to achieve high-level polymer accumulation in Nicotiana tabacum. Plant Biotech J 6:321–336CrossRefGoogle Scholar
  41. Jacobsen E, Schouten HJ (2008) Cisgenesis, a new tool for traditional plant breeding, should be exempted from the regulation on genetically modified organisms in a step by step approach. Potato Res 51:75–88CrossRefGoogle Scholar
  42. Jobling S (2004) Improving starch for food and industrial applications. Curr Opin Plant Biol 7:210–218PubMedCrossRefGoogle Scholar
  43. Jobling SA, Westcott RJ, Tayal A, Jeffcoat R, Schwall GP (2002) Production of a freeze-thaw-stable potato starch by antisense inhibition of three starch synthase genes. Nat Biotechnol 20:295–299PubMedCrossRefGoogle Scholar
  44. Kaniewski WK, Thomas PE (2004) The potato story. AgBioForum 7:41–46Google Scholar
  45. Kawchuk LM, Martin RR, McPherson J (1991) Sense and antisense RNA-mediated resistance to potato leaf roll virus in Russet Burbank potato plants. Mol Plant Microbe Interact 4:247–253CrossRefGoogle Scholar
  46. Kluge JA, Rabotyagova O, Leisk GG, Kaplan DL (2008) Spider silks and their applications. Trends Biotechnol 26:244–251PubMedCrossRefGoogle Scholar
  47. Kreft O, Hoefgen R, Hesse H (2003) Functional analysis of cystathionine gamma-synthase in genetically engineered potato plants. Plant Physiol 131:1843–1854PubMedCrossRefGoogle Scholar
  48. Lawson C, Kaniewski W, Haley L, Rozman R, Newell C, Sanders P, Tumer NE (1990) Engineering resistance to mixed virus infection in a commercial potato cultivar, resistance to potato virus X and potato virus Y in transgenic Russet Burbank potato. Bio/Technology 8:127–134PubMedCrossRefGoogle Scholar
  49. Liu D, Raghothama KG, Hasegawa PM, Bressan RA (1994) Osmotin overexpression in potato delays development of disease symptoms. Proc Natl Acad Sci USA 91:1888–1892PubMedCrossRefGoogle Scholar
  50. Lorberth R, Ritte G, Willmitzer L, Kossmann J (1998) Inhibition of a starch-granule-bound protein leads to modified starch and repression of cold sweetening. Nat Biotechnol 16:473–477PubMedCrossRefGoogle Scholar
  51. Lössl A, Bohmert K, Harloff H, Eibl C, Mühlbauer S, Koop HU (2005) Inducible trans-activation of plastid transgenes: expression of the R. eutropha phb operon in transplastomic tobacco. Plant Cell Physiol 46:1462–1471PubMedCrossRefGoogle Scholar
  52. Lytovchenko A, Sonnewald U, Fernie AR (2007) The complex network of non-cellulosic carbohydrate metabolism. Curr Opin Plant Biol 10:227–235PubMedCrossRefGoogle Scholar
  53. Matsuda F, Yamada T, Miyazawa H, Miyagawa H, Wakasa K (2005) Characterization of tryptophan-overproducing potato transgenic for a mutant rice anthranilate synthase alpha-subunit gene (OASA1D). Planta 222:535–545PubMedCrossRefGoogle Scholar
  54. Meiyalaghan S, Takla MFG, Barrell PJ, Keijzer RM, Jacobs JME, Conner AJ (2005) Resistance to tuber moth following the transfer to potato of a cry9Aa2 gene under the control of constitutive and light inducible promoters. Acta Hort 670:71-77Google Scholar
  55. Mohammed A, Douches DS, Pett W, Grafius E, Coombs J, Liswidowati, Li W, Madkour MA (2000) Evaluation of potato tuber moth (Lepidoptera: Gelechiidae) resistance in tubers of Bt-cry5 transgenic potato lines. J Econ Entomol 93:472–476PubMedCrossRefGoogle Scholar
  56. Moire L, Rezzonico E, Poirier Y (2003) Synthesis of novel biomaterials in plants. J Plant Physiol 160:831–839PubMedCrossRefGoogle Scholar
  57. Mooibroek H, Oosterhuis N, Giuseppin M, Toonen M, Franssen H, Scott E, Sanders J, Steinbüchel A (2007) Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production. Appl Microbiol Biotechnol 77:257–267PubMedCrossRefGoogle Scholar
  58. Morris WL, Ducreux LJM, Hedden P, Millam S, Taylor MA (2006a) Overexpression of a bacterial 1-deoxy-D-xylulose 5-phosphate synthase gene in potato tubers perturbs the isoprenoid metabolic network: implications for the control of the tuber life cycle. J Exp Bot 57:3007–3018PubMedCrossRefGoogle Scholar
  59. Morris WL, Ducreux LJ, Fraser PD, Millam S, Taylor MA (2006b) Engineering ketocarotenoid biosynthesis in potato tubers. Metab Eng 8:253–263PubMedCrossRefGoogle Scholar
  60. Mottram DS, Wedzicha BL, Dodson AT (2002) Acrylamide is formed in the Maillard reaction. Nature 419:448–449PubMedCrossRefGoogle Scholar
  61. Müller-Thurgau H (1882) Über Zuckeranhäufung in Pflanzentheilen in Folge niederer Temperatur. Landwirtsch Jahrb 11:751–828Google Scholar
  62. Naimov S, Dukiandjiev S, de Maagd, RA (2003) A hybrid Bacillus thuringiensis delta-endotoxin gives resistance against a coleopteran and a lepidopteran pest in transgenic potato. Plant Biotechnol J 1:51–57PubMedCrossRefGoogle Scholar
  63. Neumann K, Stephan DP, Ziegler K, Hühns M, Broer I, Lockau W, Pistorius EK (2005) Production of cyanophycin, a suitable source for the biodegradable polymer polyaspartate, in transgenic plants. Plant Biotechnol J 3:249–258PubMedCrossRefGoogle Scholar
  64. Nickel H, Kawchuk L, Twyman RM, Zimmermann S, Junghans H, Winter S, Fischer R, Prüfer D (2008) Plantibody-mediated inhibition of the Potato leafroll virus P1 protein reduces virus accumulation. Virus Res 136:140–145PubMedCrossRefGoogle Scholar
  65. Ooms G, Bossen ME, Burrell MM, Karp A (1986) Genetic manipulation in potato with Agrobacterium rhizogenes. Potato Res 29:367–379CrossRefGoogle Scholar
  66. Pain N, Watkins M, Melchers L, Simons B, Custers J, Stuiver M (2003) Evaluation of increased disease resistance in genetically modified potatoes. Proc Int Congr Mol Plant Microbe Interact 2003:11Google Scholar
  67. Perlak FJ, Stone TB, Muskopf YM, Petersen LJ, Parker GB, McPherson SA, Wyman J, Love S, Reed G, Biever D, Fischhoff DA (1993) Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol Biol 22:313–321PubMedCrossRefGoogle Scholar
  68. Poirier Y, Dennis DE, Klomparens K, Somerville C (1992) Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science 256:520–523PubMedCrossRefGoogle Scholar
  69. Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M (2008) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9:73–83PubMedGoogle Scholar
  70. Ritte G, Lloyd JR, Eckermann N, Rottmann A, Kossmann J, Steup M: (2002) The starch-related R1 protein is an alpha-glucan, water dikinase. Proc Natl Acad Sci USA 99:7166–7171PubMedCrossRefGoogle Scholar
  71. Roberfroid MB, Delzenne NM (1998) Dietary fructans. Annu Rev Nutr 18:117–143PubMedCrossRefGoogle Scholar
  72. Rocha-Sosa M, Sonnewald U, Frommer W, Stratmann M, Schell J, Willmitzer L (1989) Both developmental and metabolic signals activate the promoter of a class I patatin gene. EMBO J 8:23–29PubMedGoogle Scholar
  73. Romano A, van der Plas LHW, Witholt B, Eggink G, Mooibroek H (2005) Expression of poly-3-(R)-hydroxyalkanoate (PHA) polymerase and acyl-CoA-transacylase in plastids of transgenic potato leads to the synthesis of a hydrophobic polymer, presumably medium-chain-length PHAs. Planta 220:455–464PubMedCrossRefGoogle Scholar
  74. Römer S, Lübeck J, Kauder F, Steiger S, Adomat C, Sandmann G (2002) Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metab Eng 4:263–272PubMedCrossRefGoogle Scholar
  75. Rommens CM, Hmara JM, Ye J, Yan H, Richael C, Zhang L, Perry R, Swords K (2004) Crop improvement through modification of the plant's own genome. Plant Physiol 135:421–431PubMedCrossRefGoogle Scholar
  76. Rommens CM, Ye JS, Richael C, Swords K (2006) Improving potato storage and processing characteristics through all-native DNA transformation. J Agr Food Chem 54:9882–9887CrossRefGoogle Scholar
  77. Rushton PJ, Reinstädler A, Lipka V, Lippok B, Somssich IE (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signalling. Plant Cell 14:749–762PubMedCrossRefGoogle Scholar
  78. Scheller J, Gührs KH, Grosse F, Conrad U (2001) Production of spider silk proteins in tobacco and potato. Nat Biotechnol 19:573–577PubMedCrossRefGoogle Scholar
  79. Schwall GP, Safford R, Westcott RJ, Jeffcoat R, Tayal A, Shi YC, Gidley MJ, Jobling SA: (2000) Production of very-high-amylose potato starch by inhibition of SBE A and B. Nat Biotechnol 18:551–554PubMedCrossRefGoogle Scholar
  80. Solomon-Blackburn RM, Barker H (2001) Breeding virus resistant potatoes (Solanum tuberosum): a review of traditional and molecular approaches. Heredity 86:17–35PubMedCrossRefGoogle Scholar
  81. Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CB, Helgeson JP, Jiang J (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci USA 100:9128–9133PubMedCrossRefGoogle Scholar
  82. Stiller I, Dancs G, Hesse H, Hoefgen R, Bánfalvi Z (2007) Improving the nutritive value of tubers: elevation of cysteine and glutathione contents in the potato cultivar White Lady by marker-free transformation. J Biotechnol 128: 335–343PubMedCrossRefGoogle Scholar
  83. Strittmatter G, Janssens J, Opsomer C, Botterman J (1995) Inhibition of fungal disease development in plants by engineering controlled cell death. Bio/Technology 13:1085–1089CrossRefGoogle Scholar
  84. Tareke E, Rydberg P, Karlsson P, Eriksson S, Tornqvist M (2002) Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem 50:4998–5006PubMedCrossRefGoogle Scholar
  85. Thomas PE, Kaniewski WK, Lawson EC (1997) Reduced Field Spread of Potato Leafroll Virus in Potatoes Transformed with the Potato Leafroll Virus Coat Protein Gene. Plant Dis 81:1447–1453CrossRefGoogle Scholar
  86. Thomas P, Lawson C, Zalewski J, Reed G, Kaniewski W (2000) Extreme resistance to potato leafroll virus in potato cv. Russet Burbank mediated by the viral replicase gene. Virus Res 71:49–62PubMedCrossRefGoogle Scholar
  87. Trewavas A (2008) The cult of the amateur in agriculture threatens food security. Trends Biotechnol 26:475–478PubMedCrossRefGoogle Scholar
  88. Van Beilen JB, Poirier Y (2008) Production of renewable polymers from crop plants. Plant J 54:684–701PubMedCrossRefGoogle Scholar
  89. Van der Meer IM, Ebskamp MJM, Visser RGF, Weisbeek PJ, Smeekens SCM (1994) Fructan as a new carbohydrate sink in transgenic potato plants. Plant Cell 6:561–570Google Scholar
  90. Van der Vossen E, Sikkema A, Hekkert BTL, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36:867–882PubMedCrossRefGoogle Scholar
  91. Van der Vossen E, Gros J, Sikkema A, Muskens M, Wouters D, Wolters A, Pereira, A, Allefs S (2005) The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homologue conferring broad spectrum late blight resistance in potato. Plant J 44:208–222PubMedCrossRefGoogle Scholar
  92. Van der Vossen E, Andries G, Lokossou AA, Visser RGF, Jacobsen E (2008) A functional R-gene from Solanum bulbocastanum. PCT Patent Application WO 2008/091153Google Scholar
  93. Van Eck J, Conlin B, Garvin DF, Mason H, Navarre DA, Brown CR (2007) Enhancing beta-carotene content in potato by RNAi-mediated silencing of the beta-carotene hydroxylase gene. Am J Potato Res 84:331–342CrossRefGoogle Scholar
  94. Van Loo J, Cummings J, Delzenne N, Englyst H, Franck A, Hopkins M, Kok N, Macfarlane G, Newton D, Quigley M, Roberfroid M, van Vliet T, van den Heuvel E (1999) Functional food properties of non-digestible oligosaccharides: a consensus report from the ENDO project (DGXII AIRII-CT94-1095). Br J Nutr 81:121–132PubMedGoogle Scholar
  95. Visser RGF, Somhorst I, Kuipers GFJ, Ruys NJ, Feenstra WJ, Jacobsen E (1991) Inhibition of the expression of the gene for granule- bound synthase in potato by antisense constructs. Mol Gen Genet 225:289–296PubMedCrossRefGoogle Scholar
  96. Vleeshouwers VGAA, Rietman H, Krenek P, Champouret N, Young C, Oh SK, Wang M, Bouwmeester K, Vosman B, Visser RGF, Jacobsen E, Govers F, Kamoun S, van der Vossen EAG (2008) Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS ONE 3:e2875. doi:10.1371/journal.pone.0002875CrossRefGoogle Scholar
  97. Whalon ME, Wingerd BA (2003) Bt: Mode of action and use. Arch Insect Biochem Physiol 54:200–211PubMedCrossRefGoogle Scholar
  98. Wu G, Shortt BJ, Lawrence EB, Levine EB, Fitzsimmons KC, Shah DM (1995) Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell 7:1357–1368PubMedGoogle Scholar
  99. Yamada T, Tozawa Y, Hasegawa H, Terakawa T, Ohkawa Y, Wakasa K (2004) Use of a feedback-insensitive at subunit of anthranilate synthase as a selectable marker for transformation of rice and potato. Mol Breed 14:363–373CrossRefGoogle Scholar
  100. Yamamizo C, Kuchimura K, Kobayashi A, Katou S, Kawakita K, Jones JD, Doke N, Yoshioka H (2006) Rewiring mitogen-activated protein kinase cascade by positive feedback confers potato blight resistance. Plant Physiol 140:681–692PubMedCrossRefGoogle Scholar
  101. Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid free) rice endosperm. Science 287:303–305PubMedCrossRefGoogle Scholar
  102. Zeh M, Casazza AP, Kreft O, Roessner U, Bieberich K, Willmitzer L, Hoefgen R, Hesse H (2001) Antisense inhibition of threonine synthase leads to high methionine content in transgenic potato plants. Plant Physiol 127:792–802PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.SaKa Pflanzenzucht GbRWindebyGermany

Personalised recommendations