Advertisement

Ornamentals

  • Thomas DebenerEmail author
  • Traud Winkelmann
Chapter
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 64)

Abstract

Ornamental crops offer several interesting features for biotechnology. As a highly diverse group of different crops many morphological and physiological traits like e.g. flower structure, colours and scent are unique to certain taxa and have been intensively studied. Furthermore, plant transformation protocols have been published for more then 40 genera. However, beyond basic research commercialisation of transgenic ornamental crops is lagging behind major agricultural and horticultural crops. Here we present a selection of successful approaches that have been used to modify major characters of ornamental crops, some of which may have a market potential in the near future.

Keywords

Transgenic Line CaMV35S Promoter Ornamental Plant Glycine Betaine Tomato Spot Wilt Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aida R, Yoshida T, Ichimura K, Goto R, Shibata M (1998) Extension of flower longevity in transgenic Torenia plants incorporating ACC oxidase transgene. Plant Sci 138:91–101CrossRefGoogle Scholar
  2. Aranovich D, Lewinsohn E, Zaccai M (2007) Post-harvest enhancement of aroma in transgenic lisianthus (Eustoma grandiflorum) using the Clarkia breweri benzyl alcohol acetyltransferase (BEAT) gene. Postharvest Biol Technol 43:255–260CrossRefGoogle Scholar
  3. Ben Zvi MM, Florence NZ, Masci T, Ovadis M, Shklarman E, Ben-Meir H, Tzfira T, Dudareva N, Vainstein A (2008) Interlinking showy traits:co-engineering of scent and colour biosynthesis in flowers. Plant Biotechnol J 6:403–415PubMedCrossRefGoogle Scholar
  4. Bi YM, Cammue BPA, Goodwin PH, Raj KS, Saxena PK (1999) Resistance to Bortytis cinerea in scented geranium transformed with a gene encoding the antimicrobial protein Ace-AMP1. Plant Cell Rep 18:835–840CrossRefGoogle Scholar
  5. Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18PubMedCrossRefGoogle Scholar
  6. Boehm R (2009) Preparing the future: engineering abiotic stress tolerance in Petunia hybrida W344. Plant Anim Genomes Conf 2009:17Google Scholar
  7. Bovy AG, Angenent GC, Dons HJM, van Altvorst AC (1999) Heterologous expression of the Arabidopsis etr1-1 allele inhibits the senescence of carnation flowers. Mol Breed 5:301–308CrossRefGoogle Scholar
  8. Bradley JM, Deroles SC, Boase MR, Bloor S, Swinny E, Davies KM (1999) Variation in the ability of the maize Lc regulatory gene to upregulate flavonoid biosynthesis in heterologous systems. Plant Sci 140:31–39CrossRefGoogle Scholar
  9. Brand MH (2006) Ornamental plant transformation. In: Li Y, Pei Y (eds.) Plant biotechnology in ornamental horticulture. Haworth Food & Agricultural Products, Singapore, pp 27–50Google Scholar
  10. Casanova E, Trillas MI, Moysset L, Vainstein A (2005) Influence of rol genes in floriculture. Biotechnol Adv 23:3–39PubMedCrossRefGoogle Scholar
  11. Chandler S, Tanaka Y (2007) Genetic modification in floriculture. Crit Rev Plant Sci 26:169–197CrossRefGoogle Scholar
  12. Chang H, Jones ML, Nanowetz GM, Clark DG (2003) Overproduction of cytokinins in petunia flowers transformed with PSAG12-IPT delay corolla senescence and decrease sensitivity to ethylene. Plant Physiol 132:2174–2183PubMedCrossRefGoogle Scholar
  13. Chinnusamy V, Xiong L Zhu J-K (2005) Use of genetic engineering and molecular biology approaches for crop improvement for stress environments. In: Ashraf M, Harris PJC (eds) Abiotic stress: plant resistance through breeding and molecular approaches. Haworth, New York, pp 47–108Google Scholar
  14. Christensen B, Mueller R (2009) Kalanchoe blossfeldiana transformed with rol genes exhibits improved postharvest performance and increased ethylene tolerance. Postharvest Biol Technol 51:399–406CrossRefGoogle Scholar
  15. Christensen B, Sriskandarajah S, Serek M, Mueller R (2008) Transformation of Kalanchoe blossfeldiana with rol-genes is useful in molecular breeding towards compact growth. Plant Cell Rep 27:1485–1495PubMedCrossRefGoogle Scholar
  16. Christey MC (2001) Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol 37:687–700Google Scholar
  17. Chylinski WK, Lukaszewska AJ, Kutnik K (2007) Drought response of two bedding plants. Acta Physiol Plant 29:399–406CrossRefGoogle Scholar
  18. Clark D, Klee H, Dandekar A (2004a) Despite benefits, commercialization of transgenic horticultural crops lags. Calif Agric 58:89–98CrossRefGoogle Scholar
  19. Clark DG, Dervinis C, Barrett JE, Klee H, Jones M (2004b) Drought-induced leaf senescence and horticultural performance of transgenic PSAG12-IPT petunias. J Am Soc Hort Sci 129:93–99Google Scholar
  20. Clarke JL, Spetz C, Haugslien S, Xing SC, Dees MW, Moe R, Blystad DR (2008) Agrobacterium tumefaciens-mediated transformation of poinsettia, Euphorbia pulcherrima, with virus-derived hairpin RNA constructs confers resistance to Poinsettia mosaic virus. Plant Cell Rep 27:1027–1038PubMedCrossRefGoogle Scholar
  21. Czarny JC, Grichko VP, Glick BR (2006) Genetic modulation of ethylene biosynthesis and signaling in plants. Biotechnol Adv 24:410–419PubMedCrossRefGoogle Scholar
  22. Daughtrey ML, Benson DM (2005) Principles of plant health management for ornamental plants. Annu Rev Phytopathol 43:141–169PubMedCrossRefGoogle Scholar
  23. Deroles S, Bradley JM, Schwinn KE, Markham KR, Bloor S, Manson DG, Davies KM (1998) An antisense chalcone synthase cDNA leads to novel colour patterns in lisianthus (Eustoma grandiflorum) flowers. Mol Breed 4:59–66CrossRefGoogle Scholar
  24. Dijkstra C, Adams E, Bhattacharya A, Page AF, Anthony P, Kourmpetli S, Power JB, Lowe KC, Thomas SG, Hedden P, Phillips AL, Davey MR (2008) Over-expression of a gibberellin 2-oxidase gene from Phaseolus coccineus L. enhances gibberellin inactivation and induces dwarfism in Solanum species. Plant Cell Rep 27:463–470PubMedCrossRefGoogle Scholar
  25. Dohm A, Ludwig C, Schilling D, Debener T (2001a) Transformation of roses with genes for antifungal proteins. Proc Int Symp Rose Res Cultiv 3:27–33Google Scholar
  26. Dohm A, Ludwig C, Nehring K, Debener T (2001b) Somatic embryogenesis in roses. Proc Int Symp Rose Res Cultiv 3:341–347Google Scholar
  27. Dohm A, Ludwig C, Schilling D, Debener T (2002) Transformation of roses with genes for antifungal proteins to reduce their susceptibility to fungal diseases. Acta Hort 572:105–111Google Scholar
  28. Dudareva N, Pichersky E (2008) Metabolic engineering of plant volatiles. Curr Opin Biotechnol 19:181–189PubMedCrossRefGoogle Scholar
  29. Esposito S, Colucci MG, Frusciante L, Filippone E, Lorito M, Bressan RA (2000) Antifungal transgenes expression in Petunia hybrida. In: Breeding ornamentals in the future:goals, genes, tools. Proc Int Symp Improv Ornamental Plants 19:157–161Google Scholar
  30. Fuchs M, Gonsalves D (2007) Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Annu Rev Phytopathol 45:173–202PubMedCrossRefGoogle Scholar
  31. Fukui Y, Tanaka Y, Kusumi T, Iwashita T, Nomoto K (2003) A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3′,5′-hydroxylase gene. Phytochemistry 63:15–23PubMedCrossRefGoogle Scholar
  32. Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988PubMedCrossRefGoogle Scholar
  33. Giovannini A, Zottini M, Morreale G, Spena A, Allavena A (1999) Ornamental traits modification by rol genes in Osteospermum ecklonis transformed with Agrobacterium tumefaciens. In Vitro Cell Dev Biol 35:70–75Google Scholar
  34. Giovannini A, Morreale G, Berio T, Mascarello C, Allavena A (2002) Modification of flowering time in Osteospermum ecklonis L. by CONSTANS gene. Acta Hort 572:163–167Google Scholar
  35. Goldbach R, Bucher E, Prins M (2003) Resistance mechanisms to plant viruses: an overview. Virus Res 92:207–212PubMedCrossRefGoogle Scholar
  36. Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780PubMedCrossRefGoogle Scholar
  37. Gurr SJ, Rushton PJ (2005) Engineering plants with increased disease resistance: what are we going to express? Trends Plant Biotechnol 23:275–282CrossRefGoogle Scholar
  38. Guterman I, Masci T, Chen XL, Negre F, Pichersky E, Dudareva N, Weiss D, Vainstein A (2006) Generation of phenylpropanoid pathway-derived volatiles in transgenic plants: Rose alcohol acetyltransferase produces phenylethyl acetate and benzyl acetate in petunia flowers. Plant Mol Biol 60:555–563PubMedCrossRefGoogle Scholar
  39. Hammond J, Hsu HT, Huang Q, Jordan R, Kamo K, Pooler B (2006) Transgenic approaches to disease resistance in ornamental crops. In: Li Y, Pei Y (eds) Plant biotechnology in ornamental horticulture. Haworth Food & Agricultural Products, Singapore, pp 155–210Google Scholar
  40. Hibino Y, Kitahara K, Hirai S, Matsumoto S (2006) Structural and functional analysis of rose class B MADS-box genes MASAKO BP, euB3 and B3: paleo-type AP3 homologue MASAKO B3 association with petal development. Plant Sci 170:778–785CrossRefGoogle Scholar
  41. Iida S, Hoshino A, Johzuka-Hisatomi Y, Habu Y, Inagaki Y (1999) Floricultural traits and transposable elements in the Japanese and common morning glories. Ann NY Acad Sci 870:265–274PubMedCrossRefGoogle Scholar
  42. Iwazaki Y, Kosugi Y, Waki K, Yoshioka T, Satoh S (2004) Generation and ethylene production of transgenic carnations harbouring ACC synthase cDNA in sense or anti-sense orientation. J Appl Hort 6:67–71Google Scholar
  43. Kamo K, Gera A, Cohen J, Hammond J, Blowers A, Smith F, Van Eck J (2005) Transgenic Gladiolus plants transformed with the bean yellow mosaic virus coat-protein gene in either sense or antisense orientation. Plant Cell Rep 23:654–663PubMedCrossRefGoogle Scholar
  44. Katsumoto Y, Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A,Tao G-Q, Nehra NS, Lu CY, Dyson BK, Tsuda S, Ashikari T, Kusumi T, Mason JG, Tanaka Y (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48:1589–1600PubMedCrossRefGoogle Scholar
  45. Khodakovskaya M, Li Y, Li J, Vankova R, Malbeck J, McAvoy R (2005) Effects of cor15a-IPT gene expression on leaf senescence in transgenic Petunia hybrida and Dendranthema grandiflorum. J Exp Bot 56:1165–1175PubMedCrossRefGoogle Scholar
  46. Kim HJ, Ryu H, Hong SH, Woo HR, Lim PO, Lee IC, Sheen J, Nam HG, Hwang I (2006) Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc Natl Acad Sci USA 103:814–819PubMedCrossRefGoogle Scholar
  47. Kitahara K, Matsumoto S (2000) Rose MADS-box genes ‘MASAKO C1 and D1’ homologous to class C floral identity genes. Plant Sci 151:121–134PubMedCrossRefGoogle Scholar
  48. Kitahara K, Hirai S, Fukui H, Matsumoto S (2001) Rose MADS-box genes ′MASAKO BP and B3′ homologous to class B floral identity genes. Plant Sci 161:549–557CrossRefGoogle Scholar
  49. Kitahara K, Hibino Y, Aida R, Matsumoto S (2004) Ectopic expression of the rose AGAMOUS-like MADS-box genes 'MASAKO C1 and D1' causes similar homeotic transformation of sepal and petal in Arabidopsis and sepal in Torenia. Plant Sci 166:1245–1252CrossRefGoogle Scholar
  50. Klingeman W, Babbit B, Hall C (2006) Master gardener perception of genetically modified ornamental plants provides strategies for promoting research products through outreach and marketing. HortScience 41:1263–1268Google Scholar
  51. Kuehnle AR, Mudalige-Jayawickrama RG (2007) Transgenic ornamental crops. Plant Breed Rev 28:125–162CrossRefGoogle Scholar
  52. Kuehnle AR, Fujii T, Chen FC, Alvarez A, Sugii N, Fukui R, Aragon SL (2004) Peptide biocides for engineering bacterial blight tolerance and susceptibility in cut-flower Anthurium. HortScience 39:1327–1331Google Scholar
  53. Lara MEB, Gonzalez Garcia MC, Fatima T, Ehneß R, Lee TK, Proels R, Tanner W, Roitscha T (2004) Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16:1276–1287CrossRefGoogle Scholar
  54. Lavy M, Zuker A, Lewinsohn E, Larkov O, Ravid U, Vainstein A, Weiss, D (2002) Linalool and linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Mol Breed 9:103–111CrossRefGoogle Scholar
  55. Lers A, Burd S (2007) The potential to retard postharvest senescence using biotechnology. Stewart Postharvest Rev 2:10Google Scholar
  56. Li XQ, Gasic K, Cammue B, Broekaert W, Korban SS (2003) Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta 218:226–232PubMedCrossRefGoogle Scholar
  57. Liau C-H, Lu C, Prasad V, Hsiao H-h, You S-J, Lee J, Yang N-S, Huang H-E, Feng T-Y, Chen W-H, Chan M-T (2003) The sweet pepper ferredoxin-like protein (pflp) conferred resistance against soft rot disease in Oncidium orchid. Transgenic Res 12:329–336PubMedCrossRefGoogle Scholar
  58. Li-Hua Z, Zhang S, Larsson S, Welander M (2007) Introduction of Arabidopsis gai gene caused early flowering in carnation. Acta Hort 764:83–88Google Scholar
  59. Liu D, Galli M, Crawford NM (2001) Engineering variegated floral patterns in tobacco plants using the Arabidopsis transposable element Tag1. Plant Cell Physiol 42:419–423PubMedCrossRefGoogle Scholar
  60. Lucker J, Bouwmeester HJ, Schwab W, Blaas J, van der Plas LHW, Verhoeven HA (2001) Expression of Clarkia S-linalool synthase in transgenic Petunia plants results in the accumulation of S-linalyl-beta-D-glucopyranoside. Plant J 27:315–324PubMedCrossRefGoogle Scholar
  61. Marchant R, Davey MR, Lucas JA, Lamb CJ, Dixon RA, Power JB (1998). Expression of a chitinase transgene in rose (Rosa hybrida L) reduces development of blackspot disease (Diplocarpon rosae Wolf). Mol Breed 4:187–194CrossRefGoogle Scholar
  62. Mercuri A, Bruna S, De Benedetti L, Burchi G, Schiva T (2001) Modification of plant architecture in Limonium spp. induced by rol genes. Plant Cell Tiss Org Cult 65:247–253CrossRefGoogle Scholar
  63. Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new petunia flower color generated by transformation of a mutant with a maize gene. Nature 330:677–678PubMedCrossRefGoogle Scholar
  64. Meyer P, Linn F, Heidmann I, Meyer I, Niedenhof I, Saedler H (1992) Endogenous and environmental factors influence 35S promoter methylation of a maize A1 gene construct in transgenic petunia and its colour phenotype. Mol Gen Genet 231:345–352PubMedCrossRefGoogle Scholar
  65. Mishiba K, Nishihara M, Abe Y, Nakatsuka T, Kawamura H, Kodama K, Takesawa T, Abe J, Yamamura S (2006) Production of dwarf potted gentian using wild-type Agrobacterium rhizogenes. Plant Biotechnol 23:33–38CrossRefGoogle Scholar
  66. Mondragon-Palomino M, Theißen G (2008) MADS about the evolution of orchid flowers. Trends Plant Sci 13:51–59PubMedCrossRefGoogle Scholar
  67. Moyal Ben Zvi M, Zuker A, Ovadis M, Shklarman E, Ben-Meir H, Zenvirt S, Vainstein A (2008) Agrobacterium-mediated transformation of gypsophila (Gypsophila paniculata L.). Mol Breed 22:543–553CrossRefGoogle Scholar
  68. Nakamura N, Fukuchi-Mizutani M, Suzuki K, Miyazaki K, Tanaka Y (2006) RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression. Plant Biotechnol 23:13–17CrossRefGoogle Scholar
  69. Nakatsuka T, Pitaksutheepong C, Yamamura S, Nishihara M (2007) Induction of differential flower pigmentation patterns by RNAi using promoters with distinct tissue-specific activity. Plant Biotechnol Rep 1:251–257CrossRefGoogle Scholar
  70. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289PubMedGoogle Scholar
  71. Narumi T, Aida R, Ohmiyab A, Satoh S (2005) Transformation of chrysanthemum with mutated ethylene receptor genes: mDG-ERS1 transgenes conferring reduced ethylene sensitivity and characterization of the transformants. Postharvest Biol Technol 37:101–110CrossRefGoogle Scholar
  72. Ogawa T, Toguri T, Kudoh H, Okamura M, Momma T, Yoshioka M, Kato K, Hagiwara Y, Sano T (2005) Double-stranded RNA-specific ribonuclease confers tolerance against Chrysanthemum stunt Viroid and Tomato spotted wilt virus in transgenic chrysanthemum plants. Breed Sci 55:49–55CrossRefGoogle Scholar
  73. Ongaro V, Leyser O (2008) Hormonal control of shoot branching. J Exp Bot 59:67–74PubMedCrossRefGoogle Scholar
  74. Ono E, Fukuchi-Mizutani M, Nakamura N, Fukui Y, Yonekura-Sakakibara K, Yamaguchi M, Nakayama T, Tanaka T, Kusumi T, Tanaka Y (2006) Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc Natl Acad Sci USA 103:11075–11080PubMedCrossRefGoogle Scholar
  75. Oud JSN, Schneiders H, Kool AJ, van Grinsven MQJM (1995) Breeding of transgenic orange Petunia hybrida varieties. Euphytica 84:175–181CrossRefGoogle Scholar
  76. Park EJ, Chen THH (2006) Improvement of cold tolerance in horticultural crops. In: Li Y, Pei Y(eds) Plant biotechnology in ornamental horticulture. Haworth Food & Agricultural Products, Singapore, pp 69–120Google Scholar
  77. Petty LM, Harberd NP, Carre IA, Thomas B, Jackson SD (2003) Expression of the Arabidopsis gai gene under its own promoter causes a reduction in plant height in chrysanthemum by attenuation of the gibberellins response. Plant Sci 164:175–182CrossRefGoogle Scholar
  78. Potera C (2007) Blooming biotech. Nat Biotechnol 25:963–965PubMedCrossRefGoogle Scholar
  79. Punja ZK (2001) Genetic engineering of plants to enhance resistance to fungal pathogens-a review of progress and future prospects. Can J Plant Pathol 23:216–235CrossRefGoogle Scholar
  80. Raffeiner B, Serek M, Winkelmann T (2009) Agrobacterium tumefaciens-mediated transformation of Oncidium and Odontoglossum orchid species with the ethylene receptor mutant gene etr1-1. Plant Cell Tiss Org Cult 98:125–134CrossRefGoogle Scholar
  81. Rosati C, Simoneau P (2006) Metabolic engineering of flower color in ornamental plants: A novel route to a more colorful world. J Crop Improv 18:301–324CrossRefGoogle Scholar
  82. Rosati C, Simoneau P, Treutter D, Poupard P, Cadot Y, Cadic A, Duron M (2003) Engineering of flower color in forsythia by expression of two independently transformed dihydroflavonol 4-reductase and anthocyanidin synthase genes of flavonoid pathway. Mol Breed 12:197–208CrossRefGoogle Scholar
  83. Sanikhani M, Mibus H, Stummann BM, Serek M (2008) Kalanchoe blossfeldiana plants expressing the Arabidopsis etr1-1 allele show reduced ethylene sensitivity. Plant Cell Rep 27:729–737PubMedCrossRefGoogle Scholar
  84. Savin KW, Baudinette SC, Graham MW, Michael MZ, Nugent GD, Lu CY, Chandler SF, Cornish EC (1995) Antisense ACC oxidase RNA delays carnation petal senescence. HortScience 30:970–972Google Scholar
  85. Schwinn K, Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C (2006) A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18:831–851PubMedCrossRefGoogle Scholar
  86. Seitz C, Vitten M, Steinbach P, Hartl S, Hirsche J, Rathje W, Treutter D, Forkmann G (2007) Redirection of anthocyanin synthesis in Osteospermum hybrida by a two-enzyme manipulation strategy. Phytochem 68:824–833CrossRefGoogle Scholar
  87. Serek M, Woltering E, Sisler EC, Frello S, Sriskandarajah S (2006). Controlling ethylene responses in flowers at the receptor level. Biotechnol Adv 24:368–381PubMedCrossRefGoogle Scholar
  88. Serek M, Sisler EC, Woltering EJ, Mibus H (2007) Chemical and molecular genetic strategies to block ethylene perception for increased flower life. Acta Hort 755:163–169Google Scholar
  89. Shaw JF, Chen HH, Tsai MF, Kuo CI, Huang LC (2002) Extended flower longevity of Petunia hybrida plants transformed with boers, a mutated ERS gene of Brassica oleracea. Mol Breed 9:211–216CrossRefGoogle Scholar
  90. Sherman JM, Moyer JW, Daub ME (1998) Tomato spotted wilt virus resistance in chrysanthemum expressing the viral nucleocapsid gene. Plant Dis 82:407–414CrossRefGoogle Scholar
  91. Shibuya K, Barry KG, Ciardi JA, Loucas HM, Underwood BA, Nourizadeh S, Ecker JR, Klee HJ, Clark DG (2004) The central role of PhEIN2 in ethylene responses throughout plant development in Petunia. Plant Physiol 136:2900–2912PubMedCrossRefGoogle Scholar
  92. Shikata M, Ohme-Takagi M (2008) The utility of transcription factors for manipulation of floral traits. Plant Biotechnol 25:31–36CrossRefGoogle Scholar
  93. Shinoyama H, Mochizuki A (2006). Insect resistant transgenic chrysanthemum [Dendranthema x grandiflorum (Ramat.) Kitamura]. Acta Hort 714:177–183Google Scholar
  94. Smith AG, John KE, Gardner N (2006) Dwarfing ornamental crops with the rolC gene. In: Teixera da Silva JM (ed) Floriculture, ornamental and plant biotechnology. Global Science, London, pp 54–59Google Scholar
  95. Sriskandarajah S, Mibus H, Serek M (2007) Transgenic Campanula carpatica plants with reduced ethylene sensitivity showing specific expression of etr1-1 in flowers and buds. Plant Cell Rep 26:805–813PubMedCrossRefGoogle Scholar
  96. Stearns JC, Glick BR (2003) Transgenic plants with altered ethylene biosynthesis or perception. Biotechnol Adv 21:193–210PubMedCrossRefGoogle Scholar
  97. Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116PubMedCrossRefGoogle Scholar
  98. Suzuki S, Nishihara M, Nakatsuka T, Misawa N, Ogiwara I, Yamamura S (2007) Flower color alteration in Lotus japonicus by modification of the carotenoid biosynthetic pathway. Plant Cell Rep 26:951–959PubMedCrossRefGoogle Scholar
  99. Takatsu Y, Nishizawa Y, Hibi T, Akutsu K (1999) Transgenic chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Sci Hort 82:113–123CrossRefGoogle Scholar
  100. Tanaka Y (2006) Flower colour and cytochromes P450. Phytochem Rev 5:283–291CrossRefGoogle Scholar
  101. Tanaka Y, Ohmiya A (2008) Seeing is believing: Engineering anthocyanin and carotenoid biosynthetic pathways. Curr Opin Biotechnol 19:190–197PubMedCrossRefGoogle Scholar
  102. Tanaka Y, Katsumoto Y, Brugliera F, Mason J (2005) Genetic engineering in floriculture. Plant Cell Tiss Org Cult 80:1–24CrossRefGoogle Scholar
  103. Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749PubMedCrossRefGoogle Scholar
  104. Tanikawa N, Kashiwabara T, Hokura A, Abe T, Shibata M, Nakayama M (2008) A peculiar yellow flower coloration of Camellia using aluminum-flavonoid interaction. J Jpn Soc Hort Sci 77:402–407CrossRefGoogle Scholar
  105. Tepfer D (1984). Transformation of several species of higher plants by Agrobacterium rhizogenes: Sexual transmission of the transformed genotype and phenotype. Cell 37:959–67PubMedCrossRefGoogle Scholar
  106. Topp SH, Rasmussen SK, Sander L (2008) Alcohol induced silencing of gibberellin 20-oxidases in Kalanchoe blossfeldiana. Plant Cell Tiss Organ Cult 93:241–248CrossRefGoogle Scholar
  107. Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigene: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59:573–594PubMedCrossRefGoogle Scholar
  108. Tzeng TY, Chen HY, Yang CH (2002) Ectopic expression of carpel-specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis. Plant Physiol 130:1827–1836PubMedCrossRefGoogle Scholar
  109. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–201PubMedCrossRefGoogle Scholar
  110. van der Salm TPM, van der Toorn CJG, Bouwer R, Haenisch ten Cate CH, Dons HJM (1997). Production of rol gene transformed plants of Rosa hybrida L and characterization of their rooting ability. Mol Breed 3:39–47CrossRefGoogle Scholar
  111. Verdonk JC, Shibuya K, Loucas HM, Colquhoun TA, Underwood BA, Clark DG (2008) Flower-specific expression of the Agrobacterium tumefaciens isopentenyltransferase gene results in radial expansion of floral organs in Petunia hybrida. Plant Biotechnol J 6:694–701PubMedCrossRefGoogle Scholar
  112. Von Koskull-Döring P, Scharf K-D, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12:452–457CrossRefGoogle Scholar
  113. Wang Y, Li J (2006) Genes controlling plant architecture. Curr Opinion Biotechnol 17:123–129CrossRefGoogle Scholar
  114. Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279PubMedCrossRefGoogle Scholar
  115. Wilkinson JQ, Lanahan MB, Clark DG, Bleecker AB, Chang C, Meyerowitz EM, Klee HJ (1997) A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nature Biotechnol 15:444–447CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institute of Plant GeneticsLeibniz University HannoverHannoverGermany
  2. 2.Institute of Floriculture and Woody Plant ScienceLeibniz University HannoverHannoverGermany

Personalised recommendations