Skip to main content

Ornamentals

  • Chapter
  • First Online:

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 64))

Abstract

Ornamental crops offer several interesting features for biotechnology. As a highly diverse group of different crops many morphological and physiological traits like e.g. flower structure, colours and scent are unique to certain taxa and have been intensively studied. Furthermore, plant transformation protocols have been published for more then 40 genera. However, beyond basic research commercialisation of transgenic ornamental crops is lagging behind major agricultural and horticultural crops. Here we present a selection of successful approaches that have been used to modify major characters of ornamental crops, some of which may have a market potential in the near future.

This is a preview of subscription content, log in via an institution.

References

  • Aida R, Yoshida T, Ichimura K, Goto R, Shibata M (1998) Extension of flower longevity in transgenic Torenia plants incorporating ACC oxidase transgene. Plant Sci 138:91–101

    Article  CAS  Google Scholar 

  • Aranovich D, Lewinsohn E, Zaccai M (2007) Post-harvest enhancement of aroma in transgenic lisianthus (Eustoma grandiflorum) using the Clarkia breweri benzyl alcohol acetyltransferase (BEAT) gene. Postharvest Biol Technol 43:255–260

    Article  CAS  Google Scholar 

  • Ben Zvi MM, Florence NZ, Masci T, Ovadis M, Shklarman E, Ben-Meir H, Tzfira T, Dudareva N, Vainstein A (2008) Interlinking showy traits:co-engineering of scent and colour biosynthesis in flowers. Plant Biotechnol J 6:403–415

    Article  PubMed  CAS  Google Scholar 

  • Bi YM, Cammue BPA, Goodwin PH, Raj KS, Saxena PK (1999) Resistance to Bortytis cinerea in scented geranium transformed with a gene encoding the antimicrobial protein Ace-AMP1. Plant Cell Rep 18:835–840

    Article  CAS  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  PubMed  CAS  Google Scholar 

  • Boehm R (2009) Preparing the future: engineering abiotic stress tolerance in Petunia hybrida W344. Plant Anim Genomes Conf 2009:17

    Google Scholar 

  • Bovy AG, Angenent GC, Dons HJM, van Altvorst AC (1999) Heterologous expression of the Arabidopsis etr1-1 allele inhibits the senescence of carnation flowers. Mol Breed 5:301–308

    Article  CAS  Google Scholar 

  • Bradley JM, Deroles SC, Boase MR, Bloor S, Swinny E, Davies KM (1999) Variation in the ability of the maize Lc regulatory gene to upregulate flavonoid biosynthesis in heterologous systems. Plant Sci 140:31–39

    Article  CAS  Google Scholar 

  • Brand MH (2006) Ornamental plant transformation. In: Li Y, Pei Y (eds.) Plant biotechnology in ornamental horticulture. Haworth Food & Agricultural Products, Singapore, pp 27–50

    Google Scholar 

  • Casanova E, Trillas MI, Moysset L, Vainstein A (2005) Influence of rol genes in floriculture. Biotechnol Adv 23:3–39

    Article  PubMed  CAS  Google Scholar 

  • Chandler S, Tanaka Y (2007) Genetic modification in floriculture. Crit Rev Plant Sci 26:169–197

    Article  CAS  Google Scholar 

  • Chang H, Jones ML, Nanowetz GM, Clark DG (2003) Overproduction of cytokinins in petunia flowers transformed with PSAG12-IPT delay corolla senescence and decrease sensitivity to ethylene. Plant Physiol 132:2174–2183

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Xiong L Zhu J-K (2005) Use of genetic engineering and molecular biology approaches for crop improvement for stress environments. In: Ashraf M, Harris PJC (eds) Abiotic stress: plant resistance through breeding and molecular approaches. Haworth, New York, pp 47–108

    Google Scholar 

  • Christensen B, Mueller R (2009) Kalanchoe blossfeldiana transformed with rol genes exhibits improved postharvest performance and increased ethylene tolerance. Postharvest Biol Technol 51:399–406

    Article  CAS  Google Scholar 

  • Christensen B, Sriskandarajah S, Serek M, Mueller R (2008) Transformation of Kalanchoe blossfeldiana with rol-genes is useful in molecular breeding towards compact growth. Plant Cell Rep 27:1485–1495

    Article  PubMed  CAS  Google Scholar 

  • Christey MC (2001) Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol 37:687–700

    CAS  Google Scholar 

  • Chylinski WK, Lukaszewska AJ, Kutnik K (2007) Drought response of two bedding plants. Acta Physiol Plant 29:399–406

    Article  CAS  Google Scholar 

  • Clark D, Klee H, Dandekar A (2004a) Despite benefits, commercialization of transgenic horticultural crops lags. Calif Agric 58:89–98

    Article  Google Scholar 

  • Clark DG, Dervinis C, Barrett JE, Klee H, Jones M (2004b) Drought-induced leaf senescence and horticultural performance of transgenic PSAG12-IPT petunias. J Am Soc Hort Sci 129:93–99

    CAS  Google Scholar 

  • Clarke JL, Spetz C, Haugslien S, Xing SC, Dees MW, Moe R, Blystad DR (2008) Agrobacterium tumefaciens-mediated transformation of poinsettia, Euphorbia pulcherrima, with virus-derived hairpin RNA constructs confers resistance to Poinsettia mosaic virus. Plant Cell Rep 27:1027–1038

    Article  PubMed  CAS  Google Scholar 

  • Czarny JC, Grichko VP, Glick BR (2006) Genetic modulation of ethylene biosynthesis and signaling in plants. Biotechnol Adv 24:410–419

    Article  PubMed  CAS  Google Scholar 

  • Daughtrey ML, Benson DM (2005) Principles of plant health management for ornamental plants. Annu Rev Phytopathol 43:141–169

    Article  PubMed  CAS  Google Scholar 

  • Deroles S, Bradley JM, Schwinn KE, Markham KR, Bloor S, Manson DG, Davies KM (1998) An antisense chalcone synthase cDNA leads to novel colour patterns in lisianthus (Eustoma grandiflorum) flowers. Mol Breed 4:59–66

    Article  CAS  Google Scholar 

  • Dijkstra C, Adams E, Bhattacharya A, Page AF, Anthony P, Kourmpetli S, Power JB, Lowe KC, Thomas SG, Hedden P, Phillips AL, Davey MR (2008) Over-expression of a gibberellin 2-oxidase gene from Phaseolus coccineus L. enhances gibberellin inactivation and induces dwarfism in Solanum species. Plant Cell Rep 27:463–470

    Article  PubMed  CAS  Google Scholar 

  • Dohm A, Ludwig C, Schilling D, Debener T (2001a) Transformation of roses with genes for antifungal proteins. Proc Int Symp Rose Res Cultiv 3:27–33

    Google Scholar 

  • Dohm A, Ludwig C, Nehring K, Debener T (2001b) Somatic embryogenesis in roses. Proc Int Symp Rose Res Cultiv 3:341–347

    Google Scholar 

  • Dohm A, Ludwig C, Schilling D, Debener T (2002) Transformation of roses with genes for antifungal proteins to reduce their susceptibility to fungal diseases. Acta Hort 572:105–111

    CAS  Google Scholar 

  • Dudareva N, Pichersky E (2008) Metabolic engineering of plant volatiles. Curr Opin Biotechnol 19:181–189

    Article  PubMed  CAS  Google Scholar 

  • Esposito S, Colucci MG, Frusciante L, Filippone E, Lorito M, Bressan RA (2000) Antifungal transgenes expression in Petunia hybrida. In: Breeding ornamentals in the future:goals, genes, tools. Proc Int Symp Improv Ornamental Plants 19:157–161

    Google Scholar 

  • Fuchs M, Gonsalves D (2007) Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Annu Rev Phytopathol 45:173–202

    Article  PubMed  CAS  Google Scholar 

  • Fukui Y, Tanaka Y, Kusumi T, Iwashita T, Nomoto K (2003) A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3′,5′-hydroxylase gene. Phytochemistry 63:15–23

    Article  PubMed  CAS  Google Scholar 

  • Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    Article  PubMed  CAS  Google Scholar 

  • Giovannini A, Zottini M, Morreale G, Spena A, Allavena A (1999) Ornamental traits modification by rol genes in Osteospermum ecklonis transformed with Agrobacterium tumefaciens. In Vitro Cell Dev Biol 35:70–75

    CAS  Google Scholar 

  • Giovannini A, Morreale G, Berio T, Mascarello C, Allavena A (2002) Modification of flowering time in Osteospermum ecklonis L. by CONSTANS gene. Acta Hort 572:163–167

    CAS  Google Scholar 

  • Goldbach R, Bucher E, Prins M (2003) Resistance mechanisms to plant viruses: an overview. Virus Res 92:207–212

    Article  PubMed  CAS  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    Article  PubMed  CAS  Google Scholar 

  • Gurr SJ, Rushton PJ (2005) Engineering plants with increased disease resistance: what are we going to express? Trends Plant Biotechnol 23:275–282

    Article  CAS  Google Scholar 

  • Guterman I, Masci T, Chen XL, Negre F, Pichersky E, Dudareva N, Weiss D, Vainstein A (2006) Generation of phenylpropanoid pathway-derived volatiles in transgenic plants: Rose alcohol acetyltransferase produces phenylethyl acetate and benzyl acetate in petunia flowers. Plant Mol Biol 60:555–563

    Article  PubMed  CAS  Google Scholar 

  • Hammond J, Hsu HT, Huang Q, Jordan R, Kamo K, Pooler B (2006) Transgenic approaches to disease resistance in ornamental crops. In: Li Y, Pei Y (eds) Plant biotechnology in ornamental horticulture. Haworth Food & Agricultural Products, Singapore, pp 155–210

    Google Scholar 

  • Hibino Y, Kitahara K, Hirai S, Matsumoto S (2006) Structural and functional analysis of rose class B MADS-box genes MASAKO BP, euB3 and B3: paleo-type AP3 homologue MASAKO B3 association with petal development. Plant Sci 170:778–785

    Article  CAS  Google Scholar 

  • Iida S, Hoshino A, Johzuka-Hisatomi Y, Habu Y, Inagaki Y (1999) Floricultural traits and transposable elements in the Japanese and common morning glories. Ann NY Acad Sci 870:265–274

    Article  PubMed  CAS  Google Scholar 

  • Iwazaki Y, Kosugi Y, Waki K, Yoshioka T, Satoh S (2004) Generation and ethylene production of transgenic carnations harbouring ACC synthase cDNA in sense or anti-sense orientation. J Appl Hort 6:67–71

    CAS  Google Scholar 

  • Kamo K, Gera A, Cohen J, Hammond J, Blowers A, Smith F, Van Eck J (2005) Transgenic Gladiolus plants transformed with the bean yellow mosaic virus coat-protein gene in either sense or antisense orientation. Plant Cell Rep 23:654–663

    Article  PubMed  CAS  Google Scholar 

  • Katsumoto Y, Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A,Tao G-Q, Nehra NS, Lu CY, Dyson BK, Tsuda S, Ashikari T, Kusumi T, Mason JG, Tanaka Y (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48:1589–1600

    Article  PubMed  CAS  Google Scholar 

  • Khodakovskaya M, Li Y, Li J, Vankova R, Malbeck J, McAvoy R (2005) Effects of cor15a-IPT gene expression on leaf senescence in transgenic Petunia hybrida and Dendranthema grandiflorum. J Exp Bot 56:1165–1175

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Ryu H, Hong SH, Woo HR, Lim PO, Lee IC, Sheen J, Nam HG, Hwang I (2006) Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc Natl Acad Sci USA 103:814–819

    Article  PubMed  CAS  Google Scholar 

  • Kitahara K, Matsumoto S (2000) Rose MADS-box genes ‘MASAKO C1 and D1’ homologous to class C floral identity genes. Plant Sci 151:121–134

    Article  PubMed  CAS  Google Scholar 

  • Kitahara K, Hirai S, Fukui H, Matsumoto S (2001) Rose MADS-box genes ′MASAKO BP and B3′ homologous to class B floral identity genes. Plant Sci 161:549–557

    Article  CAS  Google Scholar 

  • Kitahara K, Hibino Y, Aida R, Matsumoto S (2004) Ectopic expression of the rose AGAMOUS-like MADS-box genes 'MASAKO C1 and D1' causes similar homeotic transformation of sepal and petal in Arabidopsis and sepal in Torenia. Plant Sci 166:1245–1252

    Article  CAS  Google Scholar 

  • Klingeman W, Babbit B, Hall C (2006) Master gardener perception of genetically modified ornamental plants provides strategies for promoting research products through outreach and marketing. HortScience 41:1263–1268

    Google Scholar 

  • Kuehnle AR, Mudalige-Jayawickrama RG (2007) Transgenic ornamental crops. Plant Breed Rev 28:125–162

    Article  CAS  Google Scholar 

  • Kuehnle AR, Fujii T, Chen FC, Alvarez A, Sugii N, Fukui R, Aragon SL (2004) Peptide biocides for engineering bacterial blight tolerance and susceptibility in cut-flower Anthurium. HortScience 39:1327–1331

    CAS  Google Scholar 

  • Lara MEB, Gonzalez Garcia MC, Fatima T, Ehneß R, Lee TK, Proels R, Tanner W, Roitscha T (2004) Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16:1276–1287

    Article  Google Scholar 

  • Lavy M, Zuker A, Lewinsohn E, Larkov O, Ravid U, Vainstein A, Weiss, D (2002) Linalool and linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Mol Breed 9:103–111

    Article  CAS  Google Scholar 

  • Lers A, Burd S (2007) The potential to retard postharvest senescence using biotechnology. Stewart Postharvest Rev 2:10

    Google Scholar 

  • Li XQ, Gasic K, Cammue B, Broekaert W, Korban SS (2003) Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta 218:226–232

    Article  PubMed  CAS  Google Scholar 

  • Liau C-H, Lu C, Prasad V, Hsiao H-h, You S-J, Lee J, Yang N-S, Huang H-E, Feng T-Y, Chen W-H, Chan M-T (2003) The sweet pepper ferredoxin-like protein (pflp) conferred resistance against soft rot disease in Oncidium orchid. Transgenic Res 12:329–336

    Article  PubMed  CAS  Google Scholar 

  • Li-Hua Z, Zhang S, Larsson S, Welander M (2007) Introduction of Arabidopsis gai gene caused early flowering in carnation. Acta Hort 764:83–88

    Google Scholar 

  • Liu D, Galli M, Crawford NM (2001) Engineering variegated floral patterns in tobacco plants using the Arabidopsis transposable element Tag1. Plant Cell Physiol 42:419–423

    Article  PubMed  CAS  Google Scholar 

  • Lucker J, Bouwmeester HJ, Schwab W, Blaas J, van der Plas LHW, Verhoeven HA (2001) Expression of Clarkia S-linalool synthase in transgenic Petunia plants results in the accumulation of S-linalyl-beta-D-glucopyranoside. Plant J 27:315–324

    Article  PubMed  CAS  Google Scholar 

  • Marchant R, Davey MR, Lucas JA, Lamb CJ, Dixon RA, Power JB (1998). Expression of a chitinase transgene in rose (Rosa hybrida L) reduces development of blackspot disease (Diplocarpon rosae Wolf). Mol Breed 4:187–194

    Article  CAS  Google Scholar 

  • Mercuri A, Bruna S, De Benedetti L, Burchi G, Schiva T (2001) Modification of plant architecture in Limonium spp. induced by rol genes. Plant Cell Tiss Org Cult 65:247–253

    Article  CAS  Google Scholar 

  • Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new petunia flower color generated by transformation of a mutant with a maize gene. Nature 330:677–678

    Article  PubMed  CAS  Google Scholar 

  • Meyer P, Linn F, Heidmann I, Meyer I, Niedenhof I, Saedler H (1992) Endogenous and environmental factors influence 35S promoter methylation of a maize A1 gene construct in transgenic petunia and its colour phenotype. Mol Gen Genet 231:345–352

    Article  PubMed  CAS  Google Scholar 

  • Mishiba K, Nishihara M, Abe Y, Nakatsuka T, Kawamura H, Kodama K, Takesawa T, Abe J, Yamamura S (2006) Production of dwarf potted gentian using wild-type Agrobacterium rhizogenes. Plant Biotechnol 23:33–38

    Article  CAS  Google Scholar 

  • Mondragon-Palomino M, Theißen G (2008) MADS about the evolution of orchid flowers. Trends Plant Sci 13:51–59

    Article  PubMed  CAS  Google Scholar 

  • Moyal Ben Zvi M, Zuker A, Ovadis M, Shklarman E, Ben-Meir H, Zenvirt S, Vainstein A (2008) Agrobacterium-mediated transformation of gypsophila (Gypsophila paniculata L.). Mol Breed 22:543–553

    Article  CAS  Google Scholar 

  • Nakamura N, Fukuchi-Mizutani M, Suzuki K, Miyazaki K, Tanaka Y (2006) RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression. Plant Biotechnol 23:13–17

    Article  CAS  Google Scholar 

  • Nakatsuka T, Pitaksutheepong C, Yamamura S, Nishihara M (2007) Induction of differential flower pigmentation patterns by RNAi using promoters with distinct tissue-specific activity. Plant Biotechnol Rep 1:251–257

    Article  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    PubMed  CAS  Google Scholar 

  • Narumi T, Aida R, Ohmiyab A, Satoh S (2005) Transformation of chrysanthemum with mutated ethylene receptor genes: mDG-ERS1 transgenes conferring reduced ethylene sensitivity and characterization of the transformants. Postharvest Biol Technol 37:101–110

    Article  CAS  Google Scholar 

  • Ogawa T, Toguri T, Kudoh H, Okamura M, Momma T, Yoshioka M, Kato K, Hagiwara Y, Sano T (2005) Double-stranded RNA-specific ribonuclease confers tolerance against Chrysanthemum stunt Viroid and Tomato spotted wilt virus in transgenic chrysanthemum plants. Breed Sci 55:49–55

    Article  CAS  Google Scholar 

  • Ongaro V, Leyser O (2008) Hormonal control of shoot branching. J Exp Bot 59:67–74

    Article  PubMed  CAS  Google Scholar 

  • Ono E, Fukuchi-Mizutani M, Nakamura N, Fukui Y, Yonekura-Sakakibara K, Yamaguchi M, Nakayama T, Tanaka T, Kusumi T, Tanaka Y (2006) Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc Natl Acad Sci USA 103:11075–11080

    Article  PubMed  CAS  Google Scholar 

  • Oud JSN, Schneiders H, Kool AJ, van Grinsven MQJM (1995) Breeding of transgenic orange Petunia hybrida varieties. Euphytica 84:175–181

    Article  Google Scholar 

  • Park EJ, Chen THH (2006) Improvement of cold tolerance in horticultural crops. In: Li Y, Pei Y(eds) Plant biotechnology in ornamental horticulture. Haworth Food & Agricultural Products, Singapore, pp 69–120

    Google Scholar 

  • Petty LM, Harberd NP, Carre IA, Thomas B, Jackson SD (2003) Expression of the Arabidopsis gai gene under its own promoter causes a reduction in plant height in chrysanthemum by attenuation of the gibberellins response. Plant Sci 164:175–182

    Article  CAS  Google Scholar 

  • Potera C (2007) Blooming biotech. Nat Biotechnol 25:963–965

    Article  PubMed  CAS  Google Scholar 

  • Punja ZK (2001) Genetic engineering of plants to enhance resistance to fungal pathogens-a review of progress and future prospects. Can J Plant Pathol 23:216–235

    Article  CAS  Google Scholar 

  • Raffeiner B, Serek M, Winkelmann T (2009) Agrobacterium tumefaciens-mediated transformation of Oncidium and Odontoglossum orchid species with the ethylene receptor mutant gene etr1-1. Plant Cell Tiss Org Cult 98:125–134

    Article  CAS  Google Scholar 

  • Rosati C, Simoneau P (2006) Metabolic engineering of flower color in ornamental plants: A novel route to a more colorful world. J Crop Improv 18:301–324

    Article  CAS  Google Scholar 

  • Rosati C, Simoneau P, Treutter D, Poupard P, Cadot Y, Cadic A, Duron M (2003) Engineering of flower color in forsythia by expression of two independently transformed dihydroflavonol 4-reductase and anthocyanidin synthase genes of flavonoid pathway. Mol Breed 12:197–208

    Article  CAS  Google Scholar 

  • Sanikhani M, Mibus H, Stummann BM, Serek M (2008) Kalanchoe blossfeldiana plants expressing the Arabidopsis etr1-1 allele show reduced ethylene sensitivity. Plant Cell Rep 27:729–737

    Article  PubMed  CAS  Google Scholar 

  • Savin KW, Baudinette SC, Graham MW, Michael MZ, Nugent GD, Lu CY, Chandler SF, Cornish EC (1995) Antisense ACC oxidase RNA delays carnation petal senescence. HortScience 30:970–972

    CAS  Google Scholar 

  • Schwinn K, Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C (2006) A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18:831–851

    Article  PubMed  CAS  Google Scholar 

  • Seitz C, Vitten M, Steinbach P, Hartl S, Hirsche J, Rathje W, Treutter D, Forkmann G (2007) Redirection of anthocyanin synthesis in Osteospermum hybrida by a two-enzyme manipulation strategy. Phytochem 68:824–833

    Article  CAS  Google Scholar 

  • Serek M, Woltering E, Sisler EC, Frello S, Sriskandarajah S (2006). Controlling ethylene responses in flowers at the receptor level. Biotechnol Adv 24:368–381

    Article  PubMed  CAS  Google Scholar 

  • Serek M, Sisler EC, Woltering EJ, Mibus H (2007) Chemical and molecular genetic strategies to block ethylene perception for increased flower life. Acta Hort 755:163–169

    CAS  Google Scholar 

  • Shaw JF, Chen HH, Tsai MF, Kuo CI, Huang LC (2002) Extended flower longevity of Petunia hybrida plants transformed with boers, a mutated ERS gene of Brassica oleracea. Mol Breed 9:211–216

    Article  CAS  Google Scholar 

  • Sherman JM, Moyer JW, Daub ME (1998) Tomato spotted wilt virus resistance in chrysanthemum expressing the viral nucleocapsid gene. Plant Dis 82:407–414

    Article  Google Scholar 

  • Shibuya K, Barry KG, Ciardi JA, Loucas HM, Underwood BA, Nourizadeh S, Ecker JR, Klee HJ, Clark DG (2004) The central role of PhEIN2 in ethylene responses throughout plant development in Petunia. Plant Physiol 136:2900–2912

    Article  PubMed  CAS  Google Scholar 

  • Shikata M, Ohme-Takagi M (2008) The utility of transcription factors for manipulation of floral traits. Plant Biotechnol 25:31–36

    Article  CAS  Google Scholar 

  • Shinoyama H, Mochizuki A (2006). Insect resistant transgenic chrysanthemum [Dendranthema x grandiflorum (Ramat.) Kitamura]. Acta Hort 714:177–183

    CAS  Google Scholar 

  • Smith AG, John KE, Gardner N (2006) Dwarfing ornamental crops with the rolC gene. In: Teixera da Silva JM (ed) Floriculture, ornamental and plant biotechnology. Global Science, London, pp 54–59

    Google Scholar 

  • Sriskandarajah S, Mibus H, Serek M (2007) Transgenic Campanula carpatica plants with reduced ethylene sensitivity showing specific expression of etr1-1 in flowers and buds. Plant Cell Rep 26:805–813

    Article  PubMed  CAS  Google Scholar 

  • Stearns JC, Glick BR (2003) Transgenic plants with altered ethylene biosynthesis or perception. Biotechnol Adv 21:193–210

    Article  PubMed  CAS  Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Nishihara M, Nakatsuka T, Misawa N, Ogiwara I, Yamamura S (2007) Flower color alteration in Lotus japonicus by modification of the carotenoid biosynthetic pathway. Plant Cell Rep 26:951–959

    Article  PubMed  CAS  Google Scholar 

  • Takatsu Y, Nishizawa Y, Hibi T, Akutsu K (1999) Transgenic chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Sci Hort 82:113–123

    Article  CAS  Google Scholar 

  • Tanaka Y (2006) Flower colour and cytochromes P450. Phytochem Rev 5:283–291

    Article  CAS  Google Scholar 

  • Tanaka Y, Ohmiya A (2008) Seeing is believing: Engineering anthocyanin and carotenoid biosynthetic pathways. Curr Opin Biotechnol 19:190–197

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Katsumoto Y, Brugliera F, Mason J (2005) Genetic engineering in floriculture. Plant Cell Tiss Org Cult 80:1–24

    Article  CAS  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    Article  PubMed  CAS  Google Scholar 

  • Tanikawa N, Kashiwabara T, Hokura A, Abe T, Shibata M, Nakayama M (2008) A peculiar yellow flower coloration of Camellia using aluminum-flavonoid interaction. J Jpn Soc Hort Sci 77:402–407

    Article  CAS  Google Scholar 

  • Tepfer D (1984). Transformation of several species of higher plants by Agrobacterium rhizogenes: Sexual transmission of the transformed genotype and phenotype. Cell 37:959–67

    Article  PubMed  CAS  Google Scholar 

  • Topp SH, Rasmussen SK, Sander L (2008) Alcohol induced silencing of gibberellin 20-oxidases in Kalanchoe blossfeldiana. Plant Cell Tiss Organ Cult 93:241–248

    Article  CAS  Google Scholar 

  • Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigene: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59:573–594

    Article  PubMed  CAS  Google Scholar 

  • Tzeng TY, Chen HY, Yang CH (2002) Ectopic expression of carpel-specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis. Plant Physiol 130:1827–1836

    Article  PubMed  CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–201

    Article  PubMed  CAS  Google Scholar 

  • van der Salm TPM, van der Toorn CJG, Bouwer R, Haenisch ten Cate CH, Dons HJM (1997). Production of rol gene transformed plants of Rosa hybrida L and characterization of their rooting ability. Mol Breed 3:39–47

    Article  Google Scholar 

  • Verdonk JC, Shibuya K, Loucas HM, Colquhoun TA, Underwood BA, Clark DG (2008) Flower-specific expression of the Agrobacterium tumefaciens isopentenyltransferase gene results in radial expansion of floral organs in Petunia hybrida. Plant Biotechnol J 6:694–701

    Article  PubMed  CAS  Google Scholar 

  • Von Koskull-Döring P, Scharf K-D, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12:452–457

    Article  CAS  Google Scholar 

  • Wang Y, Li J (2006) Genes controlling plant architecture. Curr Opinion Biotechnol 17:123–129

    Article  CAS  Google Scholar 

  • Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson JQ, Lanahan MB, Clark DG, Bleecker AB, Chang C, Meyerowitz EM, Klee HJ (1997) A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nature Biotechnol 15:444–447

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Debener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Debener, T., Winkelmann, T. (2010). Ornamentals. In: Kempken, F., Jung, C. (eds) Genetic Modification of Plants. Biotechnology in Agriculture and Forestry, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02391-0_19

Download citation

Publish with us

Policies and ethics