Skip to main content

Fruit Crops

  • Chapter
  • First Online:
Genetic Modification of Plants

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 64))

Abstract

Fruit crops play an important role in the human diet. Because of their ingredients fruits are very healthy and protective against a number of diseases. They are known to contain several health-promoting components, such as vitamins, essential minerals, antioxidants and prebiotics (fibers). The per capita recommended intake of fruits and vegetables is about 400 g day –1 . The total world need(about 390 million t year –1 ) can only be covered by planting productive cultivars. Unfortunately, most of the established cultivars do not meet all of the existing requirements. Plant breeders are therefore searching for new and better-adapted cultivars, but the requirements for a new cultivar are very high. Classic breeding strategies often reach their limits because they are time-consuming and expensive. Genetic engineering offers an exciting tool to make breeding faster, more directed and cost-efficient. This chapter intends to summarize all the activities performed in recent years to establish gene transfer technologies on fruit crop species in the world. The chapter includes most of the relevant studies done on the economically most important temperate, subtropical and tropical species. Beside the botanical classification and the economical importance of each species, this chapter presents a review of all the established transformation and selection methods and the agronomically important traits on which the international scientific community are focusing. Several ongoing projects which are may be of relevance in future are also discussed, such as the development of cisgenic plants or the use of early-flowering GM plants to speed up breeding cycles in woody plants. Furthermore, this chapter summarizes the number and aims of field trials performed in Europe and in the United States and the few cases in which GM fruit crops have already been successfully placed into the market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdal-Aziz SA, Pliego-Alfaro F, Quesada MA, Mercado JA (2006) Evidence of frequent integration of non-T-DNA vector backbone sequences in transgenic strawberry plant. J Biosci Bioeng 101:508–510

    Article  PubMed  CAS  Google Scholar 

  • Acereto-Escoffie P, Chi-Manzanero B, Echeverria S, Grijalva R, Kay A, Gonzalez-Estrada T, Castano E, Rodriguez-Zapata L (2005) Agrobacterium-mediated transformation of Musa acuminata cv. "Grand Nain" scalps by vacuum infiltration. Sci Hort 105:359–371

    Article  CAS  Google Scholar 

  • Agius F, Amaya I, Botella MA, Valpuesta V (2005) Functional analysis of homologous and heterologous promoters in strawberry fruits using transient expression. J Exp Bot 56:37–46

    PubMed  CAS  Google Scholar 

  • Aguero CB, Uratsu SL, Greve C, Powell ALT, Labavitch JM, Meredith CP, Dandekar AM (2005) Evaluation of tolerance to Pierce's disease and Botrytis in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene. Mol Plant Pathol 6:43–51

    Article  PubMed  CAS  Google Scholar 

  • Alleweldt G, Possingham JV (1988) Progress in grapevine breeding. Theor Appl Genet 75:669–673

    Article  Google Scholar 

  • Almeida W, Mourao FF, Pino L, Boscariol R, Rodriguez A, Mendes B (2003) Genetic transformation and plant recovery from mature tissues of Citrus sinensis L. Osbeck. Plant Sci 164:203–211

    Article  CAS  Google Scholar 

  • Alsheikh MK, Suso HP, Robson M, Battey NH, Wetten A (2002) Appropriate choice of antibiotic and Agrobacterium strain improves transformation of antibiotic-sensitive Fragaria vesca and F. vesca semperflorens. Plant Cell Rep 20:1173–1180

    Article  CAS  Google Scholar 

  • Ananthakrishnan G, Orbovic V, Pasquali G, Calovic M, Grosser JW (2007) Transfer of citrus tristeza virus (CTV)-derived resistance candidate sequences to four grapefruit cultivars through Agrobacterium-mediated genetic transformation. In Vitro Cell Dev Biol Plant 43:593–601

    Article  CAS  Google Scholar 

  • Arvanitoyannis IS, Mavromatis AG, Grammatikaki-Avgeli G, Sakellariou M (2008) Banana: cultivars, biotechnological approaches and genetic transformation. Int J Food Sci Technol 43:1871–1879

    Article  CAS  Google Scholar 

  • Asao H, Nishizawa Y, Arai S, Sato T., Hirai M, Yoshida K, Shinmyo A, Hibi T (1997) Enhanced resistance against fungal pathogen Sphaerotheca humuli in transgenic strawberry expresing a rice chitinase gene. Plant Biotechnol 14:145–149

    Article  CAS  Google Scholar 

  • Asao H, Arai S, Nishizawa Y (2003) Environmental risk evaluation of transgenic strawberry expressing a rice chitinase gene. Seibutsu Kogaku Kaishi 81:57–63

    CAS  Google Scholar 

  • Atkinson R, MacRae E (2007) Kiwifruit. In: Pua EC, Davey MR (eds) Transgenic crops V. Biotechnology in agriculture and forestry, vol 60. Springer, Heidelberg, pp 329–346

    Google Scholar 

  • Atkinson H, Grimwood S, Johnston K, Green J (2004) Prototype demonstration of transgenic resistance to the nematode Rodopholus similes conferred on banana by a cystatin. Transgenic Res 13:135–142

    Article  PubMed  CAS  Google Scholar 

  • Azevedo FA, Mourao FAA, Mendes BMJ, Almeida WAB, Schinor EH, Pio R, Barbosa JM, Guidetti-Gonzalez S, Carrer H, Lam E (2006) Genetic transformation of Rangpur lime (Citrus limonia Osbeck) with the b0 (bacterio-opsin) gene and its initial evaluation for Phytophthora nicotianae resistance. Plant Mol Biol Rep 24:185–196

    Article  CAS  Google Scholar 

  • Ballester A, Cervera M, Pena L (2007) Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Plant Cell Rep 26:39–45

    Article  PubMed  CAS  Google Scholar 

  • Ballester A, Cervera M, Pena L (2008) Evaluation of selection strategies alternative to nptII in genetic transformation of citrus. Plant Cell Rep 27:1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Barbier P, Perrin M, Cobanov P, Walter B (2000) Probing pathogen-derived resistance against the fanleaf virus in grapevine. Acta Hort 528:385–388

    Google Scholar 

  • Barcelo M, El-Mansouri I, Mercado JA, Quesada MA, Alfaro FP (1998) Regeneration and transformation via Agrobacterium tumefaciens of the strawberry cultivar Chandler. Plant Cell Tiss Organ Cult 54:29–36

    Article  Google Scholar 

  • Becker D, Dugdale B, Smith MK, Harding RMJ, Dale JL (2000) Genetic transformation of Cavendish banana (Musa spp. AAA group) cv. ‘Grand Nain’ via microprojectile bombardment. Plant Cell Rep 19:229–234

    Article  CAS  Google Scholar 

  • Block G, Patterson B, Subar A (1992) Fruit, vegetables and cancer prevention: a review of the epidemiological literature. Nutr Cancer 18:1–29

    Article  PubMed  CAS  Google Scholar 

  • Boscariol RL, Monteiro M, Takahashi EK, Chabregas SM, Vieira MLC, Vieira LGE, Pereira LFP, Mourao FDA, Cardoso SC, Christiano RSC, Bergamin A, Barbosa JM, Azevedo FA, Mendes BMJ (2006) Attacin A gene from Tricloplusia ni reduces susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis ‘Hamlin’. J Am Soc Hort Sci131:530–536

    CAS  Google Scholar 

  • Botella J, Fairbairn D (2005) Present and future potential of pineapple biotechnology. Acta Hort 622:23–28

    Google Scholar 

  • Botella J, Cavallaro A, Cazzonelli C (2000) Towards the production of transgenic pineapple to control flowering and ripening. Acta Hort 529:115–122

    CAS  Google Scholar 

  • Briviba K, Lein K, Szankowski I (2004) Analysis of gene expression stability in transgenic apple plants and apple fruit. Acta Hort 663:457–462

    CAS  Google Scholar 

  • Bulley SM, Malnoy M, Atkinson RG, Aldwinckle HS (2007) Transformed apples: traits of significance to growers and consumers. Transgenic Plant J 1:267–279

    Google Scholar 

  • Burgos L, Petri C, Badenes ML (2007) Prunus spp. In: Pua EC, Davey MR (eds) Biotechnology in agriculture and forestry, vol 60. Springer, Heidelberg, pp 283–307

    Google Scholar 

  • Caboni E, Lauri P, D'Angeli S (2000) In vitro plant regeneration from callus of shoot apices in apple shoot culture. Plant Cell Rep 19:755–760

    Article  CAS  Google Scholar 

  • Canli FA, Tian L (2008) In vitro shoot regeneration from stored mature cotyledons of sweet cherry (Prunus avium L.) cultivars. Sci Hort 116:34–40

    Article  CAS  Google Scholar 

  • Cervera M, Juarez J, Navarro A, Pina JA, Duran-Vila N, Navarro L, Pena L (1998a) Genetic transformation and regeneration of mature tissues of woody fruit plants bypassing the juvenile stage. Trans Res 7:51–59

    Article  CAS  Google Scholar 

  • Cervera M, Pina JA, Juarez J, Navarro L, Pena L (1998b) Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Rep 18:271–278

    Article  CAS  Google Scholar 

  • Cervera M, Ortega C, Navarro A, Navarro L, Pena L (2000a) Generation of transgenic citrus plants with the tolerance-to-salinity gene HAL2 from yeast. J Hort Sci Biotechnol 75:26–30

    CAS  Google Scholar 

  • Cervera M, Pina JA, Juarez J, Navarro L, Pena L (2000b) A broad exploration of a transgenic population of citrus: stability of gene expression and phenotype. Theor Appl Genet 100:670–677

    Article  CAS  Google Scholar 

  • Cervera M, Navarro A, Navarro L, Pena L (2008) Production of transgenic adult plants from clementine mandarin by enhancing cell competence for transformation and regeneration. Tree Physiol 28:55–66

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti A, Ganapathi T, Mukherjee PK, Bapat VA (2003) MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta 216:587–596

    PubMed  CAS  Google Scholar 

  • Chalavi V, Tabaeizadeh Z, Thibodeau P (2003) Enhanced resistance to Verticillium dahliae in transgenic strawberry plants expressing a Lycopersicon chilense chitinase gene. J Am Soc Hort Sci 128:747–753

    CAS  Google Scholar 

  • Chevreau E, Taglioni JP, Cesbron C, Dupuis F, Sourice S, Berry I, Bersegeay A, Descombin J, Loridon K (2007) Feasibility of alternative selection methods for transgenic apple and pear using the detoxification gene Vr-ERE. Acta Hort 738:277–281

    CAS  Google Scholar 

  • Colova-Tsolova V, Lu J, Perl A (2003) Cyto-embryological aspects of seedlessness in Vitis vinifera L. and exploiting DNA recombinant technology as an advanced approach for introducing seedlessness into vinifera and muscadine grapes. Acta Hort 603:195–199

    Google Scholar 

  • Cordero de Mesa M, P-AFQMMJ Jimenez-Bermudez (2000) Agrobacterium cells as microprojectile coating: a novel approach to enhance stable transformation rates in strawberry. Aust J Plant Physiol 27:1093–1100

    Google Scholar 

  • Costa MGC, Otoni WC, Moore GA (2002) An evaluation of factors affecting the efficiency of Agrobacterium-mediated transformation of Citrus paradisi (Macf.) and production of transgenic plants containing carotenoid biosynthetic genes. Plant Cell Rep 21:365–373

    Article  CAS  Google Scholar 

  • Cruz-Hernandez A, Witjaksono, Litz R, Gomez-Lim A (1998) Agrobacterium tumefaciens-mediated transformation of embryonic avocado cultures and regeneration of somatic embryos. Plant Cell Rep 17:497–503

    Article  CAS  Google Scholar 

  • Davey M, Sripaoraya S, Anthony P, Loewe KC, Power JB (2007) Pineapple. In: Pua EC, Davey MR (eds) Transgenic crops V. Biotechnology in agriculture and forestry, vol 60. Springer, Heidelberg, pp 97–127

    Google Scholar 

  • de Bondt A, Eggermont K, Penninckx I, Goderis I, Broekaert WF (1996) Agrobacterium-mediated transformation of apple (Malus x domestica Borkh): an assessment of factors affecting regeneration of transgenic plants. Plant Cell Rep 15:549–554

    Article  Google Scholar 

  • de Faria MJSS, Donnelly DJ, Cousineau JC (1997) Adventitious shoot regeneration and Agrobacterium-mediated transformation of red raspberry. Arq Biol Tecnol 40:518–529

    Google Scholar 

  • de la Fuente JI, Amaya I, Castillejo C, Sanchez-Sevilla JF, Quesada MA, Botella MA, Valpuest V (2006) The strawberry gene FaGAST affects plant growth through inhibition of cell elongation. J Exp Bot 57:2401–2411

    Article  PubMed  CAS  Google Scholar 

  • Debnath SC, Teixeira da Silva JA (2007) Strawberry culture in vitro: applications in genetic transformation and biotechnology. Fruit Veg Cereal Sci Biotechnol 1:1–12

    Google Scholar 

  • Degenhardt J, Poppe A, Montag J, Szankowski I (2006) The use of the phosphomannose-isomerase/mannose selection system to recover transgenic apple plants. Plant Cell Rep 25:1149–1156

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt J, Poppe A, Rösner L, Szankowski I (2007) Alternative selection systems in apple transformation. Acta Hort 738:287–292

    CAS  Google Scholar 

  • Deng X, Duan Y (2006) Modification of perennial fruit trees. In: Fladung M, Ewald D (eds) Tree transgenesis. Springer, Heidelberg, pp 47–66

    Chapter  Google Scholar 

  • Dhekney SA, Li ZT, Dutt M, Van Aman M, Gray DJ (2005) Genetic transformation and transgenic plant recovery from species of grape. In Vitro Cell Dev Biol 41:29

    Article  Google Scholar 

  • Dhekney SA, Litz RE, Amador DAM, Yadav AK (2007) Potential for introducing cold tolerance into papaya by transformation with C-repeat binding factor (CBF) genes. In Vitro Cell Dev Biol 43:195–202

    CAS  Google Scholar 

  • Dhekney SA, Li ZT, Dutt M, Gray DJ (2008) Agrobacterium-mediated transformation of embryogenic cultures and plant regeneration in Vitis rotundifolia Michx. (muscadine grape). Plant Cell Rep 27:865–872

    Article  PubMed  CAS  Google Scholar 

  • Dolgov SV, Firsov AP (1999) Regeneration and Agrobacterium transformation of sour cherry leaf discs. Acta Hort 484:577–580

    Google Scholar 

  • Dolgov SV, Hanke M-V (2006) Transgenic temperate fruit tree rootstocks. In: Fladung M, Ewald E (eds) Tree transgenesis recent developments. Springer, Heidelberg, pp 335–350

    Chapter  Google Scholar 

  • Dolgov SV, Skryabin KG (2004) Transgenic apple clonal rootstock resistant to Basta herbicide. Acta Hort 663:499–502

    CAS  Google Scholar 

  • Dominguez A, Guerri J, Cambra M, Navarro L, Moreno P, Pena L (2000) Efficient production of transgenic citrus plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep 19:427–433

    Article  CAS  Google Scholar 

  • Dominguez A, de Mendoza AH, Guerri J, Cambra M, Navarro L, Moreno P, Pena L (2002) Pathogen-derived resistance to Citrus tristeza virus (CTV) in transgenic Mexican lime (Citrus aurantifolia (Christ.) Swing.) plants expressing its p25 coat protein gene. Mol Breed 10:1–10

    Article  CAS  Google Scholar 

  • Dominguez A, Cervera M, Perez RM, Romero J, Fagoaga C, Cubero J, Lopez MM, Juarez JA, Navarro L, Pena L (2004) Characterisation of regenerants obtained under selective conditions after Agrobacterium-mediated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high frequencies. Mol Breed 14:171–183

    Article  CAS  Google Scholar 

  • Druart P, Delporte F, Brazda M, Ugarte-Ballon C, da Câmara Machado A, Laimer da Câmara Machado M, Jacquemin J, Watillon B (1998) Genetic transformation of cherry trees. Acta Hort 468:71–76

    Google Scholar 

  • Du G, Shi X, Pu N, Zhang J, Zhou R, Ma B (2007) The fertility of transgenic apple carrying exogenous cowpea trypsin inhibitor gene. Acta Hort 764:57–62

    CAS  Google Scholar 

  • du Plessis HJ and Brand RJ (1997) Efficient genetic transformation of strawberry (Fragaria x ananassa DUCH.) cultivar Selekta. Acta Hort 447:289–293

    Google Scholar 

  • Duan YX, Liu X, Fan J, Li DL, Wu RC, Guo WW (2007) Multiple shoot induction from seedling epicotyls and transgenic citrus plant regeneration containing the green fluorescent protein gene. Bot Stud 48:165–171

    Google Scholar 

  • Dutt M, Li ZT, Dhekney SA, Gray DJ (2007) Transgenic plants from shoot apical meristems of Vitis vinifera L. "Thompson Seedless" via Agrobacterium-mediated transformation. Plant Cell Rep 26:2101–2110

    Article  PubMed  CAS  Google Scholar 

  • El-Mansouri I, Mercado JA, Valpuesta V, Lopez-Aranda JM, Pliego-Alfaro F, Quesada MA (1996) Shoot regeneration and Agrobacterium-mediated transformation of Fragaria vesca L. Plant Cell Rep 15:642–646

    Article  CAS  Google Scholar 

  • Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M (2005) Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Trans Res 14:703–712

    Article  CAS  Google Scholar 

  • Fagoaga C, Rodrigo I, Conejero V, Hinarejos C, Tuset JJ, Arnau J, Pina JA, Navarro L, Pena L (2001) Increased tolerance to Phytophthora citrophthora in transgenic orange plants constitutively expressing a tomato pathogenesis related protein PR-5. Mol Breed 7:175–185

    Article  CAS  Google Scholar 

  • Fagoaga C, Lopez C, Moreno P, Navarro L, Flores R, Pena L (2005) Viral-like symptoms induced by the ectopic expression of the p23 gene of Citrus tristeza virus are citrus specific and do not correlate with the pathogenicity of the virus strain. Mol Plant Microbe Interact 18:435–445

    Article  PubMed  CAS  Google Scholar 

  • Fagoaga C, Lopez C, de Mendoza AH, Moreno P, Navarro L, Flores R, Pena L (2006) Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Mol Biol 60:153–165

    Article  PubMed  CAS  Google Scholar 

  • Fagoaga C, Tadeo FR, Iglesias DJ, Huerta L, Lliso I, Vidal AM, Talon M, Navarro L, Garcia-Martinez JL, Pena L (2007) Engineering of gibberellin levels in citrus by sense and antisense overexpression of a GA 20-oxidase gene modifies plant architecture. J Exp Bot 58:1407–1420

    Article  PubMed  CAS  Google Scholar 

  • Febres VJ, Lee RF, Moore GA (2008) Transgenic resistance to Citrus tristeza virus in grapefruit. Plant Cell Rep 27:93–104

    Article  PubMed  CAS  Google Scholar 

  • Ferro-Luzzi A, Cialfa E, Leclerq C, Toti E (1994) The mediteranean diet revisted: focus on fruit and vegetables. Int J Food Sci Nutr 45:291–300

    Article  Google Scholar 

  • Finn C, Hancock J (2008) Raspberries. In: Hancock J (ed) Temperate fruit crop breeding. Springer Science and Business Media, Berlin, pp 359–392

    Chapter  Google Scholar 

  • Finstad K, Martin RR (1995) Transformation of strawberry for virus resistance. Acta Hort 385:86–89

    Google Scholar 

  • Firoozabady E, Heckert M, Gutterson N (2006) Transformation and regeneration of pineapple. Plant Cell Tiss Organ Cult 84:1–16

    Article  Google Scholar 

  • Fitch M, Manshardt R, Gonsalves D, Slightom JL, Sanford JC (1992) Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of Papaya ringspot virus. Biotechnology 10:1466–1472

    Article  CAS  Google Scholar 

  • Fitch M, Manshardt R, Gonsalves D, Slightom JL (1993) Transgenic papaya plants from Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep 12:245–249

    Article  CAS  Google Scholar 

  • Flachowsky H, Birk T, Hanke V (2004) Preliminary results to establish an alternative selection system for apple transformation. Acta Hort 663:425–430

    Google Scholar 

  • Flachowsky H, Riedel M, Reim S, Hanke M-V (2008a) Evaluation of the uniformity and stability of T-DNA integration and gene expression in transgenic apple plants. Electr J Biotechnol 11. Available via http://www.ejbiotechnology.info/content/vol11/issue1/full/11/. ISSN 0717-3458

  • Flachowsky H, Richter K, Kim W-S, Geider K, Hanke M-V (2008b) Transgenic expression of a viral EPS-depolymerase is potential useful to induce fire blight resistance in apple. Ann Appl Biol 153:345–355

    Google Scholar 

  • Flachowsky H, Peil A, Rollins J, Hanke M-V, Richter K, Lee D-H (2008c) Improved fire blight resistance in transgenic apple lines by constitutive overexpression of the MbR4 gene of Malus baccata. Acta Hort 793:287–291

    CAS  Google Scholar 

  • Flachowsky H, Hanke M-V, Peil A, Strauss SH, Fladung M (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed 128:217–226

    Google Scholar 

  • Flaishman MA, Schlizerman L, Cohen Y, Kerem Z, Sivan L (2005) Expression of the health-beneficial stilbens in transgenic ‘Spadona’ pear (Pyrus communis). Acta Hort 671:283–288

    CAS  Google Scholar 

  • Folta KM, Davis TM (2006) Strawberry genes and genomics. Crit Rev Plant Sci 25:399–415

    Article  CAS  Google Scholar 

  • Folta KM, Dhingra A (2006) Transformation of strawberry: the basis for translational genomics in Rosaceae. In Vitro Cell Dev Biol 42:482–490

    CAS  Google Scholar 

  • Folta KM, Dhingra A, Howard L, Stewart PJ, Chandler CK (2006) Characterization of LF9, an octoploid strawberry genotype selected for rapid regeneration and transformation. Planta 224:1058–1067

    Article  PubMed  CAS  Google Scholar 

  • Fuchs M, Cambra M, Capote N, Jelkmann W, Kundu J, Laval V, Martelli GP, Minafra A, Petrovic N, Pfeiffer P, Pompe-Novak M, Ravelonandro M, Saldarelli P, Stussi-Garaud C, Vigne E, Zagrai I (2007) Safety assessment of transgenic plums and grapevines expressing viral coat protein genes: new insights into real environmental impact of perennial plants engineered for virus resistance. J Plant Pathol 89:5–12

    CAS  Google Scholar 

  • Fung R, Janssen BJ, Morris BA, Gardner RC (1998) Inheritance and expression of transgenes in kiwifruit. NZ J Crop Hort Sci 26:169–179

    Article  Google Scholar 

  • Ganapathi T, Higgs NS, Balint-Kurti PJ, Arntzen CJ, May GD, Van Eck JM (2001) Agrobacterium-mediated transformation of embryonic cell suspensions of banana cultivar Rasthali (AAB). Plant Cell Rep 20:157–162

    Article  CAS  Google Scholar 

  • Ganapathi TR, Chakrabarti A, Suprasanna, Bapat VA (2003) Genetic transformation in banana. In: Jaiwal PK, Singh RP (eds) Improvement of fruit. Plant genetic engineering, vol 6. Sci Tech, Singapore, pp 83–110

    Google Scholar 

  • Gao M, Matsuta N, Murayama H, Toyomasu T, Mitsuhashi W, Dandekar AM, Tao R, Nishimura K (2007) Gene expression and ethylene production in transgenic pear (Pyrus communis cv. ‘La France’) with sense or antisense cDNA encoding ACC oxidase. Plant Sci 173:32–42

    Article  CAS  Google Scholar 

  • Geier T, Eimert K, Scherer R, Nickel C (2008) Production and rooting behaviour of rolB-transgenic plants of grape rootstock 'Richter 110' (Vitis berlandieri X V-rupestris). Plant Cell Tiss Org Cult 94:269–280

    Article  Google Scholar 

  • Gentile A, Deng Z, La Malfa S, Distefano G, Domina F, Vitale A, Polizzi G, Lorito M, Tribulato E (2007) Enhanced resistance to Phoma tracheiphila and Botrytis cinerea in transgenic lemon plants expressing a Trichoderma harzianum chitinase gene. Plant Breed 126:146–151

    Article  CAS  Google Scholar 

  • Gercheva P, Zimmerman RH, Owens LD, Berry C, Hammerschlag FA (1994) Particle bombardment of apple leaf explants influences adventitious shoot formation. HortScience 29:1536–1538

    Google Scholar 

  • Gessler C, Patocchi A (2007) Recombinant DNA technology in apple. Adv Biochem Eng Biotechnol 107:113–132

    PubMed  CAS  Google Scholar 

  • Gessler C, Patocchi A, Sansavani S, Tartarani S, Gianfranceschi L (2009) Venturia inaequalis resistance in apple. Crit Rev Plant Sci 25:473–503

    Article  CAS  Google Scholar 

  • Ghorbel R, Dominguez A, Navarro L, Pena L (2000) High efficiency genetic transformation of sour orange (Citrus aurantium) and production of transgenic trees containing the coat protein gene of citrus tristeza virus. Tree Physiol 20:1183–1189

    Article  PubMed  Google Scholar 

  • Ghorbel R, Lopez C, Moreno P, Navarro L, Flores R, Pena L (2001) Transgenic citrus plants expressing the citrus tristeza virus p23 protein exhibit viral-like symptoms. Mol Plant Pathol 2:27–36

    Article  PubMed  CAS  Google Scholar 

  • Golles R, Moser R, Puhringer H, Da Camara Machado ML, Minafra A, Savino V, Saldarelli P, Martelli GP, Da Camara Machado A (2000) Transgenic grapevines expressing coat protein gene sequences of grapevine fanleaf virus, arabis mosaic virus A and grapevine mosaic virus B. Acta Hort 528:305–311

    CAS  Google Scholar 

  • Gomez Lim M, Litz R (2007) Mango. In: Pua EC, Davey MR (eds) Transgenic crops V. Biotechnology in agriculture and forestry, vol 60. Springer, Heidelberg, pp 51–71

    Google Scholar 

  • Gonsalves D (1998) Control of papaya ring spot virus in papaya: a case study. Annu Rev Phytopathol 36:415–437

    Article  PubMed  CAS  Google Scholar 

  • Gonsalves D (2002) Coat protein transgenic papaya "acquired" immunity for controlling papaya ringspot virus. Curr Top Microbiol Immunol 266:73–83

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Ramos J, Graham J, Mirkov T (2005) Transformation of citrus cultivars with genes encoding potential resistance to citrus canker (Xanthomonas axonopodis pv. citri). Phytopathol 95:35

    Google Scholar 

  • Graham J (2005) Fragaria strawberry. In: Litz R (ed) Biotechnology of fruit and nut crops. CABI, Wallingford, pp 456–474

    Chapter  Google Scholar 

  • Graham J, McNicol R (1991) Regeneration and transformation of Ribes. Plant Cell Tiss Org Cult 24:91–95

    Article  Google Scholar 

  • Graham J, McNicol RJ, Greig K (1995) Towards genetic based insect resistance in strawberry using the Cowpea trypsin inhibitor gene. Ann Appl Biol 127:163–173

    Article  CAS  Google Scholar 

  • Graham J, Greig K, McNicol RJ (1996) Transformation of blueberry without antibiotic selection. Ann Appl Biol 128:557–564

    Article  CAS  Google Scholar 

  • Graham J, Gordon SC, McNicol RJ (1997) The effect of the CpTi gene in strawberry against attack by vine weevil (Otiorhynchus sulcatus F Coleoptera: Curculionidae). Ann App Biol 131:133–139

    Article  Google Scholar 

  • Graham J, Gordon SC, Smith K, McNicol RJ, McNicol JW (2002) The effect of the Cowpea trypspin inhibitor in strawberry on damage by vine weevil under field conditions. J Hort Sci Biotechnol 77:33–40

    CAS  Google Scholar 

  • Graham M, Ko L, Hardy V, Robinson S, Sawyer B, O'Hare T, Jobin M, Dahler J, Underhill S, Smith M (2000) The development of blackheart resistant pineapples through genetic engineering. Acta Hort 529:133–136

    CAS  Google Scholar 

  • Grando MS, De Micheli L, Scienza A (1996) Characterization of Vitis germplasm using random amplified polymorphic DNA markers. Gen Res Crop Evol 43:187–192

    Article  Google Scholar 

  • Gribaudo I, Scariot V, Gambino G, Schubert A, Göller R, Laimer M (2003) Transformation of Vitis vinifera L. cv Nebbiolo with the coat protein gene of grapevine fanleaf virus (GFLV). Acta Hort 603:309–314

    CAS  Google Scholar 

  • Gruchala A, Korbin M, Zurawicz E (2004) Conditions of transformation and regeneration of ‘Induka’ and ‘Elista’ strawberry plants. Plant Cell Tiss Org Cult 79:153–160

    Article  CAS  Google Scholar 

  • Guo WW, Grosser JW (2004) Transfer of a potential canker resistance gene into citrus protoplasts using GFP as the selectable marker. Acta Hort 632:255–258

    CAS  Google Scholar 

  • Guo WW, Duan YX, Olivares-Fuster O, Wu ZC, Arias CR, Burns JK, Grosser JW (2005) Protoplast transformation and regeneration of transgenic Valencia sweet orange plants containing a juice quality-related pectin methylesterase gene. Plant Cell Rep 24:482–486

    Article  PubMed  CAS  Google Scholar 

  • Gutaronov G, Tsvetkov I, Colova-Tsolova V, Atanassov A (2001) Genetically engineered grapevines carrying GFLV coat protein and antifreeze genes. Agric Consp Sci 66:69–74

    Google Scholar 

  • Gutierrez EMA, Luth D, Moore GA (1997) Factors affecting Agrobacterium-mediated transformation in Citrus and production of sour orange (Citrus aurantium L.) plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep 16:745–753

    Article  Google Scholar 

  • Gutièrrez-Pesce P, Taylor K, Muleo R, Rugini E (1998) Somatic embryogenesis and shoot regeneration from transgenic roots of the cherry rootstock Colt (Prunus avium x P. pseudocerasus) mediated by pRi 1855 T-DNA of Agrobacterium rhizogenes. Plant Cell Rep 17:574–580

    Article  Google Scholar 

  • Gutièrrez-Pesce P, Rugini E (2004) Influence of plant growth regulators, carbon sources and iron on the cyclic secondary somatic embryogenesis and plant regeneration of transgenic cherry rootstock ‘Colt’ (Prunus avium x P. pseudocerasus). Plant Cell Tiss Org Cult 79:223–232

    Article  Google Scholar 

  • Hadonou AM, Sargeant DJ, Wilson F, James CM, Simpson DW (2004) Development of microsatellite markers in Fragaria, their use in genetic diversity analysis, and their potential for genetic linkage mapping. Genome 47:429–438

    Article  PubMed  CAS  Google Scholar 

  • Hancock J, Lyrene P, Finn CE, Vorsa N, Lobos GA (2008) Blueberries and cranberries. In: Hancock J (ed) Temperate fruit crop breeding. Springer Science and Business Media, Berlin, pp 115–150

    Chapter  Google Scholar 

  • Hanhineva KJ, Karenlampi SO (2007) Production of transgenic strawberries by temporary immersion bioreactor system and verification by TAIL-PCR. BMC Biotechnology 7. doi: 10.1186/1472-6750-7-11

    Google Scholar 

  • Hanke M-V, Flachowsky H, Peil A, Hättasch C (2007) No flower no fruit – Genetic potentials to trigger flowering in fruit trees. Genes Genomes Genomics 1:1–20

    Google Scholar 

  • Harris SA, Robinson JP, Juniper BE (2002) Genetic clues to the origin of the apple. Trends Genet 18:426–430

    Article  PubMed  CAS  Google Scholar 

  • Hassan MA, Swartz HJ, Inamine G, Mullineaux P (1993) Agrobacterium tumefaciens-mediated transformation of several Rubus genotypes and recovery of transformed plants. Plant Cell Tiss Organ Cult 33:9–17

    Article  Google Scholar 

  • Haymes KM, Davis TM (1998) Agrobacterium-mediated transformation of ‘Alpine’ Fragaria vesca, and transmission of transgenes to R1 progeny. Plant Cell Rep 17:279–283

    Article  CAS  Google Scholar 

  • He LX, Ban Y, Inoue H, Matsuda N, Liu JH, Moriguchi T (2008) Enhancement of spermidine content and antioxidant capacity in transgenic pear shoots overexpressing apple spermidine synthase in response to salinity and hyperosmosis. Phytochemistry 69:2133–2141

    Article  PubMed  CAS  Google Scholar 

  • Hebert D, Kikkert JR, Smith FD, Reisch BI (1993) Optimization of biolistic transformation of embryogenic grape cell suspensions. Plant Cell Rep 13:405–409

    Google Scholar 

  • Hernandez M, Cabrera-Ponce JL, Fragoso G, Lopez-Casillas F, Guevara-Garcia A, Rosas G, Leon-Ramirez C, Juarez P, Sanchez-Garcia G, Cervantes J, Acero G, Toledo A, Cruz C, Bojalil R, Herrera-Estrella L, Sciutto E (2007) A new highly effective anticysticercosis vaccine expressed in transgenic papaya. Vaccine 25:4252–4260

    Article  PubMed  CAS  Google Scholar 

  • Hidaka T, Omura M (1993) Transformation of Citrus protoplasts by electroporation. J Jpn Soc Hort Sci 62:371–376

    Article  CAS  Google Scholar 

  • Hidaka T, Omura M, Ugaki M, Tomiyama M (1990) Agrobacterium-mediated transformation and regeneration of Citrus spp. from suspension cells. Jpn J Breed 40:199–207

    Google Scholar 

  • Hily J-M, Scorza R, Malinowski T, Zawadzka B, Ravelonandro M (2004) Stability of gene silencing-based resistance to Plum pox virus in transgenic plum (Prunus domestica L.) under field conditions. Transgenic Res 13:427–436

    Article  PubMed  CAS  Google Scholar 

  • Hinrichsen P, Reyes MA, Castro A, Araya S, Garnier M, Prieto H, Reyes F, Munoz C, Dell'Orto P, Moynihan MR (2005) Genetic transformation of grapevines with Trichoderma harzianum and antimicrobial peptide genes for improvement of fungal tolerance. Acta Hort 689:469–479

    CAS  Google Scholar 

  • Hoffmann T, Kalinowski G, Schwab W (2006) RNAi-induced silencing of gene expression in strawberry fruit (Fragaria x ananassa) by agroinfiltration: A rapid assay for gene function analysis. Plant J 48:816–826

    Article  CAS  Google Scholar 

  • Holden M, Krastanova S, Xue B, Pang S, Sekiya M, Momol EA, Gonsalves D (2003) Genetic engineering of grape for resistance to crown gall. Acta Hort 603:481–484

    Google Scholar 

  • Houde M, Dallaire S, N'Dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2:381–387

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Huang XL, Xiao W, Zhao JT, Dai XM, Chen YF, Li XJ (2007) Highly efficient Agrobacterium-mediated transformation of embryogenic cell suspensions of Musa acuminata cv. Mas (AA) via a liquid co-cultivation system. Plant Cell Rep 26:1755–1762

    Article  PubMed  CAS  Google Scholar 

  • Husaini AM, Abdin MZ (2008) Development of transgenic strawberry (Fragaria x ananassa Duch.) plants tolerant to salt stress. Plant Sci 174:446–455

    Article  CAS  Google Scholar 

  • Iwanami T, Shimizu T, Ito T, Hirabayashi T (2004) Tolerance to Citrus mosaic virus in transgenic trifoliate orange lines harboring capsid polyprotein gene. Plant Dis 88:865–868

    Article  CAS  Google Scholar 

  • James DJ, Passey AJ, Barbara DJ, Bevan M (1989) Genetic transformation of apple (Malus pumila Mill) using a disarmed Ti-binary vector. Plant Cell Rep 7:658–661

    CAS  Google Scholar 

  • James DJ, Passey AJ, Barbara DJ (1990) Agrobacterium-mediated transformation of the cultivated strawberry (Fragaria x ananassa Duch) using disarmed binary vectors. Plant Sci 69:79–94

    Article  CAS  Google Scholar 

  • James DJ, Passey AJ, Easterbrook MA, Solomon MG, Barbara DJ (1992) Progress in the introduction of transgenes for pest resistance in apples and strawberries. Phytoparasitica 20:83–87

    Article  Google Scholar 

  • James DJ, Passey AJ, Baker SA (1995) Transgenic apples display stable gene expression in the fruit and Mendelian segregation of the transgenes in the R1 progeny. Euphytica 85:109–112

    Article  Google Scholar 

  • Jardak-Jamoussi R, Bouamama B, Wetzel T, Mliki A, Reustle GM, Ghorbel A (2003) Evaluation of different gene constructs for production of resistant grapevines against grapevine fanleaf and arabis mosaic viruses. Acta Hort 603:315–323

    CAS  Google Scholar 

  • Jimenez-Bermudez S, Redondo-Nevado J, Munoz-Blanco J, Caballero JL, Lopez-Aranda JM, Valpuesta V, Pliego-Alfaro F, Quesada MA, Mercado JA (2002) Manipulation of strawberry fruit softening by antisense expression of a pectate lyase gene. Plant Physiol 128:751–759

    Article  PubMed  CAS  Google Scholar 

  • Kaneyoshi J, Kobayashi S (2000) Genetic transformation of Poncirus trifoliata (trifoliate orange). In: Bajaj YPS (ed) Transgenic trees. Biotechnology in agriculture and forestry, vol 40. Springer, Heidelberg, pp 212–220

    Chapter  Google Scholar 

  • Kaneyoshi J, Kobayashi S, Nakamura Y, Shigemoto N, Doi Y (1994) A simple and efficient gene transfer system of trifoliate orange. Plant Cell Rep 13:541–545

    CAS  Google Scholar 

  • Kaneyoshi J, Wabiko H, Kobayashi S, Tsuchiya T (2001) Agrobacterium tumefaciens AKE10-mediated transformation of an Asian pea pear, Pyrus betulaefolia Bunge: host specificity of bacterial strains. Plant Cell Rep 20:622–628

    Article  CAS  Google Scholar 

  • Karjalainen R, Välimäki K, Pacot-Hiriart C, Kleemola M, Lehto K (2001) Optimising of the transformation methods of black currant (Ribes nigrum L.) and development of transgenic resistance against black currant reversion virus. Acta Hort 560:169–172

    CAS  Google Scholar 

  • Katayama H, Uematsu C (2003) Comperative analysis of chloroplast DNA in Pyrus species: physical map and gene localization. Theor Appl Genet 1006:303–310

    Google Scholar 

  • Kayim M, Ceccardi TL, Berretta MJ, Barthe GA, Derrick KS (2004) Introduction of a citrus blight-associated gene into Carrizo citrange [Citrus sinensis (L.) Osbc. x Poncirus trifoliata (L.) Raf.] by Agrobacterium-mediated transformation. Plant Cell Rep 23:377–385

    Article  PubMed  CAS  Google Scholar 

  • Kegler H, Hartman W (1998) Present status of controlling conventional strains of plum pox virus. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant virus disease control. APS, St. Paul, pp 616–628

    Google Scholar 

  • Kendurkar S, Naik VB, Nadgauda RS (2006) Genetic transformation of some tropical trees, shrubs, and tree-like plants. In: Fladung M, Ewald D Tree transgenesis. Springer, Heidelberg, pp 67–102

    Chapter  Google Scholar 

  • Khammuang S, Dheeranupattana S, Hanmuangjai P, Wongroung S (2005) Agrobacterium-mediated transformation of modified antifreeze protein gene in strawberry. Songklanakarin J Sci Technol 27:693–703

    Google Scholar 

  • Khanna H, Becker D, Kleidon J, Dale J (2004) Centrifugation assisted Agrobacterium tumefaciens-mediated transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and Lady finger AAB). Mol Breed 14:239–252

    Article  CAS  Google Scholar 

  • Khanna HK, Paul JY, Harding RM, Dickman MB, Dale JL (2007) Inhibition of Agrobacterium-induced cell death by antiapoptotic gene expression leads to very high transformation efficiency of banana. Mol Plant-Microbe Interact 20:1048–1054

    Article  CAS  Google Scholar 

  • Kikkert J, Herbert-Soule D, Wallace PG, Striem MJ, Reisch BJ (1996) Trangenic plantlets of ‘Chancellor’ grapevine (Vitis sp.) from biolistic transformation of embryogenic callus suspensions. Plant Cell Rep 15:311–316

    Article  CAS  Google Scholar 

  • Kikkert JR, Reustle GM, Ali GS, Wallace PG, Reisch BI (2000) Expression of a fungal chitinase in Vitis vinifera L. "Merlot" and "Chardonnay" plants produced by biolistic transformation. Acta Hort 528:297–303

    CAS  Google Scholar 

  • Kikkert JR, Vidal JR, Reisch BI (2005a) Application of the biolistic method for grapevine genetic transformation. Acta Hort 689:459–462

    CAS  Google Scholar 

  • Kikkert JR, Vidal JR, Wallace PG, Reisch BI, Carcia-Zitter S, Wilcox WF, Gadoury D, Seem RC, Burr TJ (2005b) Disease resistance analyses of transgenic grapevines that contain endochitinase or antimicrobial peptide genes. Acta Hort 689:493–498

    CAS  Google Scholar 

  • Ko H, Campbell PR, Jobin-Decor MP, Eccleston KL, Graham MW, Smith MK (2006) The introduction of transgenes to control blackheart disease in pineapple (Ananas comosus L.) cv. Smooth Cayenne by microprojectile bombardment. Euphytica 150:387–395

    Article  CAS  Google Scholar 

  • Kobayashi S, Uchimiya H (1989) Expression and integration of a foreign gene in orange (Citrus sinensis Osb.) protoplasts by direct DNA transfer. Jpn J Genet 64:91–97

    Article  Google Scholar 

  • Kobayashi S, Ding CK, Nakamura Y, Nakajima I, Matsumoto R (2000) Kiwifruits (Actinidia deliciosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol glucoside). Plant Cell Rep 19:904–910

    Article  CAS  Google Scholar 

  • Kokko H, Karenlampi S (1998) Transformation of actic bramble (Rubus arcticus L.) by Agrobacterium tumefaciens. Plant Cell Rep 17:822–826

    Article  CAS  Google Scholar 

  • Koltunow A, Brennan P, Protopsaltis S, Nito N (2000) Regeneration of West Indian limes (Citrus aurantifolia) containing genes for decreased seed set. Acta Hort 535:81–91

    CAS  Google Scholar 

  • Krastanova S, Ling KS, Zhu HY, Xue B, Burr TJ, Gonsalves D (2000) Development of transgenic grapevine rootstocks with genes from grapevine fanleaf virus and grapevine leafroll associated closteroviruses 2 and 3. Acta Hort 528:367–372

    CAS  Google Scholar 

  • Krens FA, Pelgrom KTB, Schaart JG, den Nijs APM, Rouwendal GJA (2004) Clean vector technology for marker-free transgenic fruit crops. Acta Hort 663:431–435

    CAS  Google Scholar 

  • Krishna H, Singh SK (2007) Biotechnological advances in mango (Mangifera indica L.) and their future implication in crop improvement – a review. Biotechnol Adv 25:223–243

    Article  PubMed  CAS  Google Scholar 

  • Kumar GBS, Ganapathi TR, Revathi CJ, Srinivas L, Bapat VA (2005) Expression of hepatitis B surface antigen in transgenic banana plants. Planta 222:484–493

    Article  PubMed  CAS  Google Scholar 

  • Kunta M, Skaria M, Da Graca JV, Mirkov T, Louzada ES (2008) Progress on the development of broad spectrum disease resistance in citrus through transformation with CNGCcit and bcl-2 genes. Phytopathology 98:85–85

    Google Scholar 

  • Kusaba S, Kano-Murakami Y, Matsuoka M, Fukumoto M (1995) A rice homeobox containing gene altered morphology of tobacco and kiwifruit. Acta Hort 392:203–208

    CAS  Google Scholar 

  • Kusaba S, Kano-Murakami Y, Matsuoka M, Matsuta N, Sakamoto K, Fukumoto M (1999) Expression of the rice homeobox gene, OSH1, causes morphological changes in transgenic kiwifruit. J Jpn Soc Hort Sci 68:482–486

    Article  CAS  Google Scholar 

  • Laimer M (2006) Virus resistance breeding in fruit trees. In: Fladung M, Ewald D (eds) Tree transgenesis, Springer, Heidelberg, pp 181–199

    Chapter  Google Scholar 

  • Laimer da Câmara Machado M, da Câmara Machado A, Hanzer V, Weib H, Regner F, Steinkellner H, Mattanovitch D, Plail R, Knapp E, Kalthoff B, Katinger H (1992) Regeneration of transgenic plants of Prunus armeniaca containing the coat protein gene of Plum Pox Virus. Plant Cell Rep 11:25–29

    Google Scholar 

  • Lalli DA, Artlip TS, Wisniewski ME, Norelli JL, Farrell Jr RE (2008) Transgenic expression of Erwinia amylovora effectors eop1 and hopCEa in apple. Acta Hort 793:241–245

    CAS  Google Scholar 

  • Lambert C, Tepfer D (1991) Use of Agrobacterium rhizogenes to create chimeric apple-trees through genetic grafting. BioTechnology 9:80–83

    Article  Google Scholar 

  • Lambert C, Tepfer D (1992) Use of Agrobacterium rhizogenes to create transgenic apple-trees having an altered organogenic response to hormones. Theor Appl Genet 85:105–109

    Article  CAS  Google Scholar 

  • Lebedev VG, Dolgov SV (2000) The effect of selective agents and a plant intron on transformation efficiency and expression of heterologous genes in pear Pyrus communis L. Russ J Genet 36:650–655

    CAS  Google Scholar 

  • Lebedev VG, Dolgov SV, Skryabin KG (2002a) Transgenic pear clonal rootstocks resistant to herbicide Basta. Acta Hort 596:193–197

    CAS  Google Scholar 

  • Lebedev VG, Dolgov SV, Lavrova N, Lunin VG, Naroditski BS (2002b) Plant-defensin genes introduction for improvement of pear phytopathogen resistance. Acta Hort 596:167–172

    CAS  Google Scholar 

  • Lebedev VG, Taran SA, Shmatchenko VV, Dolgov SV (2002c) Pear transformation with the gene for supersweet protein thaumatin II. Acta Hort 596:199–202

    CAS  Google Scholar 

  • Li DD, Shi W, Deng XX (2002) Agrobacterium-mediated transformation of embryogenic calluses of Ponkan mandarin and the regeneration of plants containing the chimeric ribonuclease gene. Plant Cell Rep 21:153–156

    Article  CAS  Google Scholar 

  • Li DD, Shi W, Deng XX (2003a) Factors influencing Agrobacterium-mediated embryogenic callus transformation of Valencia sweet orange (Citrus sinensis) containing the pTA29-barnase gene. Tree Physiol 23:1209–1215

    Article  PubMed  CAS  Google Scholar 

  • Li M, Huang ZG, Han LX, Zhao GR, Li YH, Yao JL (2003b) A high efficient Agrobacterium tumefaciens-mediated transformation system for kiwifruit. Acta Hort 753:501–507

    Google Scholar 

  • Li H, Flachowsky H, Fischer TC, Hanke V, Forkmann G, Treutter D, Schwab W, Hoffmann T, Szankowski I (2007) Maize Lc transcription factor causes induction of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.). Planta 226:1243–1254

    Article  PubMed  CAS  Google Scholar 

  • Li SJ, Wen RM, Pei XW, Chen SK, Li WM, Jia SR (2007) Transformation of GbSGT1 gene into banana by an Agrobacterium-mediated approach. Prog Nat Sci 17:1241–1243

    Article  CAS  Google Scholar 

  • Li ZT, Dhekney S, Dutt M, Van Aman M, Tattersall J, Kelley KT, Gray DJ (2006) Optimizing Agrobacterium-mediated transformation of grapevine. In Vitro Cell Dev Biol 42:220–227

    CAS  Google Scholar 

  • Liu Q, Salih S, Hammerschlag F (1998) Etiolation of 'Royal Gala' apple (Malus x domestica Borkh.) shoots promotes high-frequency shoot organogenesis and enhanced beta-glucuronidase expression from stem internodes. Plant Cell Rep 18:32–36

    Article  CAS  Google Scholar 

  • Liu Z, Scorza R, Hily J-M (2007) Engineering resistance to multiple Prunus fruit viruses through expression of chimeric hairpins. J Am Hort Sci 132:407–414

    CAS  Google Scholar 

  • Lius S, Mansharch RM, Fitch MMM, Slightom JL, Sanford JC, Gonsalves D (1997) Pathogen derived resistance provides papaya with effective protection against papaya ringspot virus. Mol Breed 3:161–168

    Article  Google Scholar 

  • Lopez-Perez AJ, Velasco L, Pazos-Navarro M, Dabauza M (2008) Development of highly efficient genetic transformation protocols for table grape Sugraone and Crimson Seedless at low Agrobacterium density. Plant Cell Tiss Org Cult 94:189–199

    Article  CAS  Google Scholar 

  • Lunkenbein S, Coiner H, De Vos CHR, Schaart JG, Boone MJ, Krens FA, Schwab W, Salentijn EMJ (2006a) Molecular characterization of a stable antisense chalcone synthase phenotype in strawberry (Fragaria x ananassa). J Agric Food Chem 54:2145–2153

    Article  PubMed  CAS  Google Scholar 

  • Lunkenbein S, Salentijn EMJ, Coiner HA, Boone MJ, Krens FA, Schwab W (2006b) Up- and down-regulation of Fragaria x ananassa O-methyltransferase: impacts on furanone and phenylpropanoid metabolism. J Exp Bot 57:2445–2453

    Article  PubMed  CAS  Google Scholar 

  • Maheswaran G, Pridmore L, Franz P, Anderson MA (2007) A proteinase inhibitor from Nicotiana alata inhibits the normal development of light-brown apple moth, Epiphyas postvittana in transgenic apple plants. Plant Cell Rep 26:773–782

    Article  PubMed  CAS  Google Scholar 

  • Malinowski T, Cambra M, Capote N, Zawadska B, Gorris MT, Scorza R, Ravelonandro M (2006) Field trials of plum clones transformed with the Plum pox virus coat protein (PPV-CP) gene. Plant Dis 90:1012–1018

    Article  CAS  Google Scholar 

  • Malnoy M, Venisse JS, Brisset MN, Chevreau E (2003) Expression of bovine lactoferrin cDNA confers resistance to Erwinia amylovora in transgenic pear. Mol Breed 12:231–244

    Article  CAS  Google Scholar 

  • Malnoy M, Faize M, Venisse JS, Geider K, Chevreau E (2005a) Expression of viral EPS-depolymerase reduces fire blight susceptibility in transgenic pear. Plant Cell Rep 23:632–638

    Article  PubMed  CAS  Google Scholar 

  • Malnoy M, Venisse JS, Chevreau E (2005b) Expression of a bacterial effector, harpin N, causes increased resistance to fire blight in Pyrus communis. Tree Genet Genomes 1:41–49

    Article  Google Scholar 

  • Malnoy M, Borejsza-Wysocka EE, Abbott P, Lewis S, Norelli JL, Flaishman M, Gidoni D, Aldwinckle HS (2007a) Genetic transformation of apple without use of a selectable marker. Acta Hort 738:319–322

    Google Scholar 

  • Malnoy M, Jin Q, Borejsza-Wysocka EE, He SY, Aldwinckle HS (2007b) Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus x domestica. Mol Plant Microbe Interact 20:1568–1580

    Article  PubMed  CAS  Google Scholar 

  • Malnoy M, Borejsza-Wysocka EE, Aldwinckle HS, Mellotto M, He SY (2008a) Expression of the type III secretion chaperone protein DspF of Erwinia amylovora in apple increases resistance to fire blight. Acta Hort 793:237–240

    CAS  Google Scholar 

  • Malnoy M, Borejsza-Wysocka EE, Pascal-Omeñaca L, Aldwinckle HS, Oh C-S, Beer SV (2008b) Silencing of HIPM, the apple protein that interacts with HrpN of Erwinia amylovora. Acta Hort 793:261–264

    CAS  Google Scholar 

  • Mante S, Morgens PH, Scorza R, Cordts JM, Callahan AM (1991) Agrobacterium-mediated transformation of plum (Prunus domestica L.) hypocotyl slices and regeneration of transgenic plants. Biotechnology 9:853–857

    Article  CAS  Google Scholar 

  • Martin R, Mathews H (2001) Engineering resistance to raspberry bushy dwarf virus. Acta Hort 551:33–38

    CAS  Google Scholar 

  • Martinelli A, Gaiani A, Cella R (1996) Agrobacterium-mediated transformation of strawberry cultivar Marmolada. Acta Hort 439:169–173

    Google Scholar 

  • Martinelli L, Costa D, Poletti V, Festi S, Perl A, Buzkan N, Minafra A, Saldarelli P, Martelli GP (2000) Genetic transformation of tobacco and grapevine for resistance to viruses related to the rugose wood disease complex. Acta Hort 528:321–327

    CAS  Google Scholar 

  • Mathews H, Litz R, Wilde HD, Merkel S, Wetzstein HY (1992) Stable integration and expression of β-glucuronidase and NPT II genes in mango somatic embryos. In Vitro Cell Dev Biol 28:172–178

    Google Scholar 

  • Mathews H, Litz R, Wilde HD, Wetzstein HY (1993) Genetic transformation of mango. Acta Hort 341:93–97

    Google Scholar 

  • Mathews H, Wagoner W, Cohen C, Kellog J, Bestwick R (1995a) Efficient genetic transformation of red raspberry, Rubus idaeus L. Plant Cell Rep 14:471–476

    CAS  Google Scholar 

  • Mathews H, Wagoner W, Kellogg J, Bestwick R (1995b) Genetic transformation of strawberry: stable integration of a gene to control biosynthesis of ethylene. In Vitro Cell Dev Biol 31:36–43

    CAS  Google Scholar 

  • Mathews H, Dewey V, Wagoner W, Bestwick RK (1998) Molecular and cellular evidence of chimaeric tissues in primary transgenics and elimination of chimaerism through improved selection protocols. Trans Res 7:123–129

    Article  CAS  Google Scholar 

  • Matsuda N, Gao M, Isuzugawa K, Takashina T, Nishimura K (2005) Development of an Agrobacterium-mediated transformation method for pear (Pyrus communis L.) with leaf-section and axillary shoot-meristem explants. Plant Cell Rep 24:45–51

    Article  PubMed  CAS  Google Scholar 

  • May G, Afza R, Mason HS, Wiecko A, Novak FJ, Arntzen CJ (1995) Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Biotechnology 13:486–492

    Article  CAS  Google Scholar 

  • McCafferty HRK, Moore PH, Zhu YJ (2006) Improved Carica papaya tolerance to carmine spider mite by the expression of Manduca sexta chitinase transgene. Trans Res 15:337–347

    Article  CAS  Google Scholar 

  • McCafferty HRK, Moore PH, Zhu YJ (2008) Papaya transformed with the Galanthus nivalis GNA gene produces a biologically active lectin with spider mite control activity. Plant Sci 175:385–393

    Article  CAS  Google Scholar 

  • Meng R, Che T, Finn C, Li H (2004) Improving in vitro plant regeneration for ‘Marion’ blackberry. HortScience 39:316–320

    CAS  Google Scholar 

  • Mercado JA, Martin-Pizarro C, Pascual L, Quesada MA, Pliego-Alfaro F, de los Santos B, Romero F, Galvez J, Rey M, de la Vina G, Llobell A, Yubero-Serrano EM, Munoz-Blanco J, C (2007a) Evaluation of tolerance to Colletotrichum acutatum in strawberry plants transformed with Trichoderma-derived genes. Acta Hort 738:383–388

    CAS  Google Scholar 

  • Mercado JA, Plieco-Alfaro F, Quesada MA (2007b) Strawberry. In: Pua EC, Davey MR (eds) Transgenic crops V. Biotechnology in agriculture and forestry, vol 60. Springer, Heidelberg, pp 309–328

    Google Scholar 

  • Merkulov SM, Bartish IV, Dolgov SV, Pasternak TP, McHugen A (1998) Genetic transformation of pear Pyrus communis L. mediated by Agrobacterium tumefaciens. Genetika 34:373–378

    Google Scholar 

  • Mezzetti B (2003) Genetic transformation in strawberry and raspberry. In: Jaiwal PK, Singh RP (eds) Improvement of fruit. Plant genetic engineering, vol 6. Sci Tech, Singapore, pp 191–210

    Google Scholar 

  • Mezzetti B, Constantini E (2006) Strawberry (Fragaria x ananassa). In: Wang K (Ed) Agrobacterium protocols, vol 2. Methods in molecular biology 344. Humana, Totowa, N.J., pp 287–295

    Google Scholar 

  • Mezzetti B, Landi L, Scortichini L, Rebori A, Spena A, Pandolfini T (2002a) Genetic engineering of parthenocarpic fruit development in strawberry. Acta Hort 567:101–104

    Google Scholar 

  • Mezzetti B, Landi L, Spena A (2002b) Biotechnology for improving Rubus production and quality. Acta Hort 585:73–78

    CAS  Google Scholar 

  • Mezzetti B, Landi L, Pandolfini T, Spena A (2004) The defH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry. Biotechnology 4:4. doi:10.1186/1472-6750-4-4

    PubMed  Google Scholar 

  • Mezzetti B, Silvestroni O, C, Constantini E, Pandolfini T, Spena A (2005) Genetic transformation of table grape via organogenesis and field evaluation of DefH9-iaaM transgenic plants. Acta Hort 689:463–468

    CAS  Google Scholar 

  • Mhameed S, Sharon D, Kaufman D, Lahav E, Hillel J, Degani C, Lavi U (1997) Genetic relationships within avocado (Persea americana Mill) cultivars and between Persea species. Theor Appl Genet 94:279–286

    Article  Google Scholar 

  • Miguel CM, Oliveira MM (1999) Transgenic almond (Prunus dulcis Mill.) plants obtained by Agrobacterium-mediated transformation of leaf explants. Plant Cell Rep 18:387–389

    Article  CAS  Google Scholar 

  • Molphe Balch EP (2003) Genetic transformation and regeneration of citrus species. In: Jaiwal PK, Singh RP (eds) Improvement of fruit. Plant genetic engineering, vol 6. Sci Tech, Singapore, pp 1–22

    Google Scholar 

  • Monte-Corvo L, Cabrita L, Oliveira C, Leitão J (2000) Assessment of genetic relationships among Pyrus species and cultivars using AFLP and RAPD markers. Gen Res Crop Evol 47:257–265

    Article  Google Scholar 

  • Monticelli S, Gentile A, Damiano C (2002) Regeneration and Agrobacterium-mediated transformation in stipules of strawberry. Acta Hort 567:105–107

    Google Scholar 

  • Moore GA, Cline K (1987) Genetic transformation studies in Citrus using the Agrobacterium tumefaciens vector system. HortScience 22:1111–1111

    Google Scholar 

  • Moore GA, Jacono CC, Neidigh JL, Lawrence SD, Cline K (1992) Agrobacterium-mediated transformation of Citrus stem segments and regeneration of transgenic plants. Plant Cell Rep 11:238–242

    Article  CAS  Google Scholar 

  • Morgan A, Baker CM, Ch JSF, Lee K, Crandall BA, Jose L (2002) Production of herbicide tolerant strawberry through genetic engineering. Acta Hort 567:113–115

    Google Scholar 

  • Mourgues F, Chevreau E, Lambert C, deBondt A (1996) Efficient Agrobacterium-mediated transformation and recovery of transgenic plants from pear (Pyrus communis L). Plant Cell Rep 16:245–249

    CAS  Google Scholar 

  • Mourgues F, Chevreau E, Brisset MN (1999) Antibacterial effect of cecropins on Erwinia amylovora/pear cells interaction/a preliminary study. Acta Hort 489:251–252

    CAS  Google Scholar 

  • Morris DM, Kritchevsky SB, Davis CE (1994) Serum carotenoids and coronary heart disease: the lipid research clinics coronary primary prevention trial and fellow-up study. J Am Med Assoc 274:1439–1441

    Article  Google Scholar 

  • Mullins M, Tang FCA, Facciotti D (1990) Agrobacterium-mediated genetic transformation of grapevines: transgenic plants of Vitis rupestris Scheele and buds of Vitis vinifera L. Biotechnology 8:1041–1045

    Article  CAS  Google Scholar 

  • Mulwa RMS, Norton MA, Farrand SK, Skirvin RM (2007) Agrobacterium-mediated transformation and regeneration of transgenic ‘Chancellor’ wine grape plants expressing the tfdA gene. Vitis 46:110–115

    CAS  Google Scholar 

  • Murayama H, Toyomasu T, Mitsuhashi W, Dandekar AM, Gao M, Matsuta N, Nishimura K, Tao R (2003) Transformation of pear (Pyrus communis cv. 'La France') with genes involved in ethylene biosynthesis. Acta Hort 625:387–393

    Google Scholar 

  • Nagel AK, Schnabel G, Petri C, Scorza R (2008) Generation and characterization of transgenic plum lines expressing the Gastrodia antifungal protein. HortScience 43:1514–1521

    Google Scholar 

  • Nakajima I, Matsuta N, Yamamoto T, Terakami S, Soejima J (2006) Genetic transformation of ‘Kyoho’ grape with a GFP gene. J Jpn Soc Hort Sci 75:188–190

    Article  CAS  Google Scholar 

  • Nakamura Y, Sawada H, Kobayashi S, Nakajima I, Yoshikawa M (1999) Expression of soybean alpha-1,3-endoglucanase cDNA and effect on disease tolerance in kiwifruit plants. Plant Cell Rep 18:527–532

    Article  CAS  Google Scholar 

  • Nehra NS, Chibbar RN, Kartha KK, Datla RSS, Crosby WL, Stushnoff C (1990) Genetic-transformation of strawberry by Agrobacterium tumefaciens using a leaf disk regeneration system. Plant Cell Rep 9:293–298

    CAS  Google Scholar 

  • Németh M (1994) History and importance of plum pox in stone-fruit production. Bull OEPP 24:525–536

    Article  Google Scholar 

  • Nicola-Negri ED, Brunetti A, Tavazza M, Ilardi V (2005) Hairpin RNA-mediated silencing of Plum pox virus P1 and HC-Pro genes for efficient and predictable resistance to the virus. Transgenic Res 14:989–994

    Article  PubMed  CAS  Google Scholar 

  • Niedz RP, Mckendree WL, Shatters RG (2003) Electroporation of embryogenic protoplasts of sweet orange (Citrus sinensis (L.) Osbeck) and regeneration of transformed plants. In Vitro Cell Dev Biol 39:586–594

    CAS  Google Scholar 

  • Norelli JL, Aldwinckle HS (1993) The role of aminoglycoside antibiotics in the regeneration and selection of neomycin phosphotransferase-transgenic apple tissue. J Am Hort Sci 118:311–316

    CAS  Google Scholar 

  • Norelli JL, Borejsza-Wysocka E, Momol MT, Mills JZ, Grethel A, Aldwinckle HS (1999) Genetic transformation for fire blight resistance in apple. Acta Hort 489:295–296

    Google Scholar 

  • Norelli JL, Jones AL, Aldwinckle HS (2003) Fire blight management in the twenty-first century – using new technologies that enhance host resistance in apple. Plant Dis 87:756–765

    Article  Google Scholar 

  • Nyman M, Wallin A (1988) Plant regeneration from strawberry (Fragaria x ananassa) mesophyll protoplasts. J Plant Physiol 133:375–377

    Article  Google Scholar 

  • Olah R, Szegedi E, Ruthner S, Korbuly J (2003) Optimization of conditions for regeneration and genetic transformation of rootstock and scion grape varieties. Acta Hort 603:491–497

    Google Scholar 

  • Olah R, Toth A, Ruthner S, Korbuly J, Szegedi E (2004) Genetic transformation of rootstock cultivar Richter 110 with the gene encodibng the ironbinding protein, ferritin. Acta Hort 652:471–473

    Google Scholar 

  • Oliveira CM, Mota M, Monte-Corvo L, Goulão L., Silva DM (1999) Molecular typing of Pyrus based on RAPD markers. Sci Hort 79:163–174

    Article  CAS  Google Scholar 

  • Oliveira M, Fraser L (2005) Actinidia spp. Kiwifruit. In: Litz R (ed) Biotechnology of fruit and nut crops, CABI, Wallingford, pp 2–27

    Chapter  Google Scholar 

  • Omar AA, Song WY, Grosser JW (2007) Introduction of Xa21, a Xanthomonas-resistance gene from rice, into ‘Hamlin’ sweet orange [Citrus sinensis (L.) Osbeck] using protoplast-GFP co-transformation or single plasmid transformation. J Hort Sci Biotechnol 82:914–923

    CAS  Google Scholar 

  • Oosumi T, Gruszewski HA, Blischak LA, Baxter AJ, Wadl PA, Shuman JL, Veilleux RE, Shulaev V (2006) High-efficiency transformation of the diploid strawberry (Fragaria vesca) for functional genomics. Planta 223:1219–1230

    Article  PubMed  CAS  Google Scholar 

  • Orbovic V, Calovic M, Grosser J (2008) Effect of media composition on efficiency of Agrobacterium-mediated transformation of citrus. HortScience 43:1204–1204

    Google Scholar 

  • Owens CL (2005) Breeding temperate fruit crops for improved freezing tolerance. HortScience 40:1950–1953

    CAS  Google Scholar 

  • Owens CL, Thomashow MF, Hancock JF, Iezzoni AF (2002) CBF1 orthologs in sour cherry and strawberry and the heterologous expression of CBF1 in strawberry. J Am Soc Hort Sci 127:489–494

    CAS  Google Scholar 

  • Padilla IMG, Golis A, Gentile A, Damiano C, Scorza R (2006) Evaluation of transformation in peach Prunus persica explants using green fluorescent protein (GFP) and beta-glucuronidase (GUS) reporter genes. Plant Cell Tiss Org Cult 84:309–314

    Article  CAS  Google Scholar 

  • Palomer X, Llop-Tous I, Vendrell M, Krens FA, Schaart JG, Boone MJ, van der Valk H, Salentijn EMJ (2006) Antisense down-regulation of strawberry endo-beta-(1,4)-glucanase genes does not prevent fruit softening during ripening. Plant Sci 171:640–646

    Article  CAS  Google Scholar 

  • Park JI, Lee YK, Chung WI, Lee IH, Choi JH, Lee WM, Ezura H, Lee SP, Kim IJ (2006) Modification of sugar composition in strawberry fruit by antisense suppression of an ADP-glucose pyrophosphorylase. Mol Breed 17:269–279

    Article  CAS  Google Scholar 

  • Pasquali G, Biricolti S, Locatelli F, Baldoni E, Mattana M (2008) Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Rep 27:1677–1686

    Article  PubMed  CAS  Google Scholar 

  • Pei X, Cheng S, Wen R, Ye S, Huang YQ, Wang BS, Wang ZX, Jia SR (2005) Creation of transgenic banana expressing human lysozyme gene for Panama wilt resistance. J Integr Plant Biol 47:971–977

    Article  CAS  Google Scholar 

  • Pena L, Navarro L (2000) Transgenic citrus. In: Penna L, Navarro L (eds) Transgenic trees. Biotechnology in agriculture and forestry, vol 44. Springer, Heidelberg, pp 39–54

    Chapter  Google Scholar 

  • Pena L, Seguin A (2001) Recent advances in the genetic transformation of trees. Trends Biotechnol 19:500–506

    Article  PubMed  CAS  Google Scholar 

  • Pena L, Cervera M, Juarez J, Navarro A, Pina JA, Navarro L (1997) Genetic transformation of lime (Citrus aurantifolia Swing): factors affecting transformation and regeneration. Plant Cell Rep 16:731–737

    Article  CAS  Google Scholar 

  • Pena L, Martin-Trillo M, Juarez J, Pina JA, Navarro L, Martinez-Zapater JM (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotechnol 19:263–267

    Article  PubMed  CAS  Google Scholar 

  • Pena L, Cervera M, Fagoaga C, Romero J, Juarez J, Pina JA, Navarro L (2007) Citrus. In: Pua EC, Davey MR (eds) Transgenic crops V. Biotechnology in agriculture and forestry, vol 60. Springer, Heidelberg, pp 35–50

    Google Scholar 

  • Pérez-Clemente RM, Pérez-Sanjuán A, García-Férriz L, Beltrán J-P, Cañas LA (2004) Transgenic peach plants (Prunus persica L.) produced by genetic transformation of embryo sections using the green fluorescent protein (GFP) as an in vivo marker. Mol Breed 14:419–427

    Article  Google Scholar 

  • Perez-Hernandez J, Swennen R, Sagi L (2006) Number and accuracy of T-DNA insertions in transgenic banana (Musa spp.) plants charcterized by an improved anchored PCR technique. Transgenic Res 15:139–150

    Article  PubMed  CAS  Google Scholar 

  • Perl A, Eshdat Y (2007) Grape. In: Pua EC, Davey MR (eds) Transgenic crops V. Biotechnology in agriculture and forestry, vol 60. Springer, Heidelberg, pp 189–208

    Google Scholar 

  • Perl A, Lotan O, AbuAbied M, Holland D (1996) Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L): The role of antioxidants during grape–Agrobacterium interactions. Nat Biotechnol 14:624–628

    Article  PubMed  CAS  Google Scholar 

  • Perl A, Sahar N, Spiegel-Roy P, Gavish S, Elyasi R, Orr E, Bazak H (2000) Conventional and biotechnological approaches in breeding seedless table grapes. Acta Hort 528:607–612

    Google Scholar 

  • Petri C, Burgos L (2005) Transformation of fruit trees. Useful breeding tool or continued future prospect? Transgenic Res 14:15–26

    Article  PubMed  CAS  Google Scholar 

  • Petri C, Webb K, Hily J-M, Dardick C, Scorza R (2008a) High transformation efficiency in plum (Prunus domestica L.): a new tool for functional genomics studies in Prunus spp. Mol Breed 22:581–591

    Article  CAS  Google Scholar 

  • Petri C, Wang H, Alburquerque N, Faize M, Burgos L (2008b) Agrobacterium-mediated transformation of apricot (Prunus armeniaca L.) leaf explants. Plant Cell Rep 27:1317–1324

    Article  PubMed  CAS  Google Scholar 

  • Phipps JB, Robertson KR, Smith PG, Rohrer JR (1990) A checklist of the subfamily Maloideae (Rosaceae). Can J Bot 68:2209–2269

    Article  Google Scholar 

  • Polashock J, Vorsa N (2002) Cranberry transformation and regeneration. In: Khachatourians GG (eds) Transgenic plants and crops, Dekker, New York, pp 383–396

    Google Scholar 

  • Pua E (2007) Banana. In: Pua EC, Davey MR (eds) Transgenic crops V. Biotechnology in agriculture and forestry, vol 60. Springer, Heidelberg, pp 3–34

    Chapter  Google Scholar 

  • Qian G-Z, Liu L-F, Tang G-G (2006) A new section in Malus (Rosaceae) from China. Ann Bot Fenn 43:68–73

    Google Scholar 

  • Qin YH, da Silva JAT, Zhang LX, Zhang SL (2008) Transgenic strawberry: State of the art for improved traits. Biotechnol Adv 26:219–232

    Article  PubMed  CAS  Google Scholar 

  • Qu L, Polashock J, Vorsa N (2000) A highly efficient in vitro cranberry regeneration system using leaf explants. HortScience 35:827–832

    Google Scholar 

  • Quesada MA, Martin-Pizarro C, Garcia-Gago J, Pose S, Santiago N, Sesmero R, Plieco-Alfaro F, Mercado JA (2007) Transgenic strawberry: current status and future perspectives. Transgenic Plant J 1:280–288

    Google Scholar 

  • Radian-Sade S, Perl A, Edelbaum O, Kuzentsova L, Gafny R, Sela I, Tanne E (2000) Transgenic Nicotiana benthamiana and grapevine plants transformed with grapevine virus A (GVA) sequences. Phytoparasitisca 28:79–86

    Article  CAS  Google Scholar 

  • Raharjo SHT, Witjaksono NFN, Gomez-Lim MA, Padilla G, Litz RE (2008) Recovery of avocado (Persea americana Mill.) plants transformed with the antifungal plant defensin gene PDF1.2. In Vitro Cell Dev Biol Plant 44:254–262

    Article  CAS  Google Scholar 

  • Rai M (2006) Refinement of the Citrus tristeza virus resistance gene (Ctv) positional map in Poncirus trifoliata and generation of transgenic grapefruit (Citrus paradisi) plant lines with candidate resistance genes in this region. Plant Mol Biol 61:399–414

    Article  PubMed  CAS  Google Scholar 

  • Ramesh SA, Kaiser BN, Franks T, Collins G, Sedgley M (2006) Improved methods in Agrobacterium-mediated transformation of almond using positive (mannose/pmi) or negative (kanamycin resistance) selection-based protocols. Plant Cell Rep 25:821–828

    Article  PubMed  CAS  Google Scholar 

  • Reim S, Hanke V (2004) investigation on stability of transgenes and their expression in transgenic apple plants (Malus x domestica BORKH.). Acta Hort 663:419–424

    CAS  Google Scholar 

  • Reim S, Flachowsky H, Michael M, Hanke M-V (2006) Assessing gene flow in apple using a descendant of Malus sieversii var. sieversii f. niedzwetzkyana as an identifier for pollen dispersal. Environ Biosaf Res 5:89–104

    Article  CAS  Google Scholar 

  • Reisch B, Kikkert JR, Vidal JR, Ali GS, Gadoury D (2003) Genetic transformation of Vitis vinifera to improve disease resistance. Acta Hort 603:303–308

    Google Scholar 

  • Remy S, Francois I, Cammue BPA, Swennen R, Sagi L (1998) Co-transformation as a potential tool to create multiple and durable resistance in banana. Acta Hort 461:361–365

    Google Scholar 

  • Reustle G, Wallbraun M, Zwiebel M, Wolf R, Manthey T, Burkhardt C, Lerm T, Vivier M, Krczal G (2003) Selectable marker systems for genetic engineering of grapevine. Acta Hort 603:485–490

    Google Scholar 

  • Reustle G, Ebel R, Winterhagen P, Manthey T, Dubois C, Bassler A, Sinn M, Cobanov P, Wetzel T, Krczal G, Jardak-Jamoussi R, Ghorbel A (2005) Induction of silencing in transgenic grapevines (Vitis sp.). Acta Hort 689:521–528

    CAS  Google Scholar 

  • Reynoird JP, Mourgues F, Chevreau E, Brisset MN, Aldwinckle HS (1999) Expression of SB-37 gene in transgenic pears enhanced resistance to fire blight. Acta Hort 489:243–244

    Google Scholar 

  • Ricardo VG, Coll Y, Castagnaro A, Ricci JCD (2000) Transformation of a strawberry cultivar using a modified regeneration medium. HortScience 38:277–280

    Google Scholar 

  • Rivera-Dominguez M (2006) Plant biotechnology and biotechnological aspects of mango. Interciencia 31:95–100

    Google Scholar 

  • Robischon M (2006) Field trials with transgenic trees – state of the art and developments. In: Fladung M, Ewald E (eds) Tree transgenesis. Springer, Heidelberg, pp 3–24

    Chapter  Google Scholar 

  • Rodriguez A, Cervera M, Peris JE, Pena L (2008) The same treatment for transgenic shoot regeneration elicits the opposite effect in mature explants from two closely related sweet orange (Citrus sinensis (L.) Osb.) genotypes. Plant Cell Tiss Org Cult 93:97–106

    Article  Google Scholar 

  • Rohrbach K, Christopher D, Hu J, Paull R, Sipes B, Nagai C, Moore P, McPherson M, Atkinson H, Levesley A, Oda C, Fleisch H, McLean M (2008) Mangement of a multiple goal pineapple genetic engineering program. Acta Hort 529:111–113

    Google Scholar 

  • Rout GR, Samantaray S, Das P (2000) Biotechnology of the banana: A review of recent progress. Plant Biol 2:512–524

    Article  CAS  Google Scholar 

  • Roy AS, Smith IM (1994) Plum pox situation in Europe. Bull OEPP 24, 515–523

    Article  Google Scholar 

  • Rugini E, Caricato G, Muganu M, Taratufolo C, Camilli M, Camilli C (1997) Genetic stability and agronomic evaluation of six-year-old transgenic kiwi plants for rol ABC and rol B genes. Acta Hort 447:609–610

    Google Scholar 

  • Sagi L, Remy S, Panis B, Swennen R, Volckaert G (1994) Transient gene expression in electroporated banana (Musa spp. ‘Bluggoe’, AAB group) protoplasts isolated from regenerable embryonic cell suspensions. Plant Cell Rep 13:262–266

    Article  CAS  Google Scholar 

  • Sagi L, Panis B, Remy S, Schoofs H, Smet K, Swennen R, Gammue BPA (1995) Genetic transformation of banana and plantain (Musa spp.) via particle bombardment. Biotechnology 13:481–485

    Article  PubMed  CAS  Google Scholar 

  • Sagi L, May GD, Remy S, Swennen R (1998) Recent developments in biotechnological research on bananas (Musa species). Biotechnol Genet Eng Rev 15:313–327

    CAS  Google Scholar 

  • Sargeant DJ, Hadonou AM, Simpson DW (2003) Development and characterization of polymorphic microsatellite markers from Fragaria viridis, a wild diploid strawberry. Mol Ecol Notes 3:350–352

    Article  CAS  Google Scholar 

  • Schaart JG, Salentijn EMJ, Krens FA (2002) Tissue-specific expression of the beta-glucuronidase reporter gene in transgenic strawberry (Fragaria x ananassa) plants. Plant Cell Rep 21:313–319

    Article  CAS  Google Scholar 

  • Schaart JG, Krens FA, Pelgrom KTB, Mendes O, Rouwendal GJA (2004) Effective production of marker-free transgenic strawberry plants using inducible site-specific recombination and a bifunctional selectable marker gene. Plant Biotechnol J 2:233–240

    Article  PubMed  CAS  Google Scholar 

  • Schestibratov KA, Dolgov SV (2005) Transgenic strawberry plants expressing a thaumatin II gene demonstrate enhanced resistance to Botrytis cinerea. Sci Hort 106:177–189

    Article  CAS  Google Scholar 

  • Scorza R, Ravelonandro M (2006) Control of plum pox virus through the use of genetically modified plants. Bull OEPP 36:337–340

    Article  Google Scholar 

  • Scorza R, Ravelonandro M, Callahan AM, Cordts JM, Fuchs M, Dunez J, Gonsalves D (1994) Transgenic plums (Prunus domestica L.) express the plum pox coat protein gene. Plant Cell Rep 14:18–22

    Article  CAS  Google Scholar 

  • Scorza R, Cordts JM, Ramming DW, Emershad RL (1995a) Transformation of grape (Vitis vinifera L) zygotic derived somatic embryos and regeneration of transgenic plants. Plant Cell Rep 14:589–592

    Article  CAS  Google Scholar 

  • Scorza R, Levy L, Damsteegt VD, Yepes LM, Cordts JM, Hadidi A, Slightom J, Gonsalves D (1995b) Transformation of plum with the papaya ringspot virus coat protein gene and reaction of transgenic plants to plum pox virus. J Am Hort Sci 120:943–952

    Google Scholar 

  • Scorza R, Cordts JM, Gray DJ, Gonsalves D, Emershad RL, Ramming DW (1996) Producing transgenic ‘Thompson Seedless’ grape (Vitis vinifera L) plants. J Am Soc Hort Sci 121:616–619

    Google Scholar 

  • Serres R, Stang E, McCabe D, Russell D, Mahr D, McCown B (1992) Gene transfer using electric discharge particle bombardment and recovery of transformed cranberry plants. J Am Soc Hort Sci 117:174–180

    CAS  Google Scholar 

  • Soejima J (2007) Estimation of gene flow via pollen spread for the orchard layout prior to the field release of apple transformants. Acta Hort 738:341–345

    Google Scholar 

  • Song G, Sink K (2004) Agrobacterium tumefaciens-mediated transformation of blueberry (Vaccinium corymbosum). Plant Cell Rep 23:475–484

    Article  PubMed  CAS  Google Scholar 

  • Song G, Roggers RA, Sink K, Particka M, Zandstra B (2006) Production of herbicide-resistant highbush blueberry ‘Legacy’ by Agrobacterium-mediated transformation of the Bar gene. Acta Hort 738:397–407

    Google Scholar 

  • Song G-Q, Sink KC (2005) Optimizing shoot regeneration and transient expression factors for Agrobacterium tumefaciens transformation of sour cherry (Prunus cerasus L.) cultivar Montmorency. Sci Hort 106:60–69

    Article  CAS  Google Scholar 

  • Song GQ, Sink KC, Callow PW, Baughan R, Hancock JF (2008) Evaluation of a herbicide-resistant trait conferred by the bar gene driven by four distinct promoters in transgenic blueberry plants. J Am Soc Hort Sci 133:605–611

    Google Scholar 

  • Spielmann A, Krastanova S, Douet-Orhand V, Gugerli P (2000) Analysis of transgenic grapevine (Vitis vinifera) and Nicotiana benthamiana plants expressing and Arbis mosaic virus coat protein gene. Plant Sci 156:235–244

    Article  PubMed  CAS  Google Scholar 

  • Sreeramanan S, Maziah M, Rosli NM, Sariah M, Xavier R (2006) Enhanced tolerance against fungal pathogen, Fusarium oxysporum f. sp. cubense (Race-1) in transgenic silk banana. Int J Agric Res 4:342–354

    Google Scholar 

  • Sripaoraya S, Marchant R, Power JB, Davey MR (2001) Herbicide-tolerant pineapple (Ananas comosus) produced by microprojectile bombardment. Ann Bot 88:597–603

    Article  CAS  Google Scholar 

  • Sripaoraya S, Keawsompong S, Insupa P, Power JB, Davey MR, Srinives P (2006) Genetically manipulated pineapple: transgene stability, gene expression and herbicide tolerance under field conditions. Plant Breed 125:411–413

    Article  CAS  Google Scholar 

  • Swartz HJ, Stover EW (1996) Genetic transformation in raspberries and blackberries (Rubus species) In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 38. Springer, Heidelberg, pp 297–307

    Google Scholar 

  • Swietlik D, Vann C, Wisniewski M, Artlip T, Norelli JL, Kochian L (2007) The effect of transporter genes on zinc stress in apple (Malus × domestica BORKH.). Acta Hort 738:345–351

    Google Scholar 

  • Szankowski I, Briviba K, Fleschhut J, Schönherr J, Jacobsen HJ, Kiesecker H (2003) Transformation of apple (Malus domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis vinifera L.) and a PGIP gene from kiwi (Actinidia deliciosa). Plant Cell Rep 22:141–149

    Article  PubMed  CAS  Google Scholar 

  • Szankowski I, Flachowsky H, Li H, Halbwirth H, Treutter D, Regos I, Hanke M-V, Stich K, Fischer TC (2009) Shift in polyphenol profile and sublethal phenotype caused by silencing of anthocyanidin synthase in apple (Malus sp.). Planta 229:681–692

    Article  PubMed  CAS  Google Scholar 

  • Tamura M, Gao M, Tao R, Labavitch JM, Dandekar AM (2008) Transformation of persimmon with a pear fruit polygalacturonidase inhibiting protein (PGIP) gene. Sci Hort 1:19–30

    Google Scholar 

  • Tao R, Dandekar A (2000) Genetic transformation of Diospyros kaki L. In: Bajaj YPS (ed) Transgenic trees. Biotechnology in agriculture and forestry, vol 44. Springer, Heidelberg, pp 77–87

    Chapter  Google Scholar 

  • Tao R, Handa T, Tamura M, Sugiura A (1994) Genetic transformation of Japanese persimmon (Diospyros kaki L.) by Agrobacterium rhizogenes wild type strain A4. J Jpn Soc Hort Sci 63:283–289

    Article  CAS  Google Scholar 

  • Tao R, Dandekar AM, Uratsu SL, Vail PV, Tebbets JS (1997) Engineering genetic resistance against insects in Japanese persimmon using the cryIA(c) gene of Bacillus thuringiensis. J Am Soc Hort Sci 122:764–771

    CAS  Google Scholar 

  • Tripathi L, Tripathi JN, Hughes JD (2005) Agrobacterium-mediated transformation of plantain (Musa spp.) cultivar Agbagba. Afr J Biotechnol 4:1378–1383

    CAS  Google Scholar 

  • Tripathi L, Tripathi JN, Tushemereirwe WK (2008) Rapid and efficient production of transgenic East African Highland Banana (Musa spp.) using intercalary meristematic tissues. Afr J Biotechnol 7:1438–1445

    Google Scholar 

  • Tsvetkov I, Atanassov A, Tsolova VM (2000) Gene transfer for stress resistance in grapes. Acta Hort 528:389–394

    CAS  Google Scholar 

  • Ude G, Pillay M, Nwakanma D, Tenoukano A (2002) Analysis of genetic diversity and sectional relationships in Musa using AFLP markers. Theor Appl Genet 104:1239–1245

    Article  PubMed  CAS  Google Scholar 

  • Uematsu C, Murase M, Ichikawa H, Imamura J (1991) Agrobacterium-mediated transformation and regeneration of kiwifruit. Plant Cell Rep 10:286–290

    Article  CAS  Google Scholar 

  • Valerio R, de Garcia EC (2008) Genetic transformation of plantain (Musa sp. cv. Harton) by a biobalistic method applied to meristematic tissue. Interciencia 33:225–231

    Google Scholar 

  • Vardi A, Bleichman S, Aviv D (1990) Genetic transformation of citrus protoplasts and regeneration of transgenic plants. Plant Sci 69:199–206

    Article  CAS  Google Scholar 

  • Vaughan SP, James DJ, Lindsey K, Massiah AJ (2006) Characterization of FaRB7, a near root-specific gene from strawberry (Fragaria x ananassa Duch.) and promoter activity analysis in homologous and heterologous hosts. J Exp Bot 57:3901–3910

    Article  PubMed  CAS  Google Scholar 

  • Vellicce GR, Ricci JCD, Hernandez L, Castagnaro AP (2006) Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5B in strawberry. Transgenic Res 15:57–68

    Article  PubMed  CAS  Google Scholar 

  • Vidal J, Kikkert JR, Wallace PG, Reisch BI (2003) High-efficiency biolistic co-transformation and regeneration of ‘Chardonnay’ (Vitis vinifera L.) containing npt-II and antimicrobial peptide genes. Plant Cell Rep 22:252–260

    Article  PubMed  CAS  Google Scholar 

  • Vidal J, Kikkert JR, Malnoy MA, Wallace PG, Barnard J, Reisch BI (2006) Evaluation of transgenic ‘Chardonnay’ (Vitis vinifera) containing magainin genes for resistance to crown gall and powdery mildew diseases. Transgenic Res 15:1–14

    Article  CAS  Google Scholar 

  • Vigne E, Komar V, Fuchs M (2004) Field safety assessment of recombination in transgenic grapevines, expressing the coat protein gene of Grapevine fanleaf virus. Trans Res 13:165–179

    Article  CAS  Google Scholar 

  • Wang J, Ge H, Peng S, Zhang H, Chen P, Xu J (2004) Transformation of strawberry (Fragaria ananassa Duch.) with late embryogenesis abundant protein gene. J Hort Sci Biotechnol 79:735–738

    CAS  Google Scholar 

  • Wang T, Ran YD, Atkinson R, Gleave AP, Cohen D (2006) Transformation of Actinidia eriantha: a potential species for functional genomic studies in Actinidia. Plant Cell Rep 25:425–431

    Article  PubMed  CAS  Google Scholar 

  • Watt K, Graham J, Gordon SC, Woodhead M, McNicol RJ (1999) Current and future transgenic control strategies to vine weevil and other insect resistance in strawberry. J Hort Sci Biotechnol 74:409–421

    CAS  Google Scholar 

  • Wawrzynczak D, Michalczuk L, Sowik W (2005) Modification in indole-3-acetic acid metabolism, growth and development of strawberry through transformation with maize 1AA-glucose synthase gene (iaglu). Acta Physiol Plant 27:19–27

    Article  CAS  Google Scholar 

  • Wen XP, Pang XM, Matsuda N, Kita M, Inoue H, Hao YJ, Honda C, Moriguchi T (2008) Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251–263

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (1990) Diet, nutrition and the prevention of cronic diseases: report of WHO study group. WHO technical series report 797. World Health Organization, Geneva

    Google Scholar 

  • Wong WS, Li GG, Ning W, Xu ZF, Hsiao WLW, Zhang LY, Li N (2001) Repression of chilling-induced ACC accumulation in transgenic citrus by over-production of antisense 1-aminocyclopropane-1-carboxylate synthase RNA. Plant Sci 161:969–977

    Article  CAS  Google Scholar 

  • Wu YJ, Zhang SL, Xie M, Chen JW, Jiang GH, Qin YH, Qin QP (2006) Genetic transformation of peach immature cotyledons with its antisense ACO gene. Yi Chuan 28:65–70

    PubMed  CAS  Google Scholar 

  • Xue B, Ling KS, Reid CL, Krastanova S, Sekiya M, Momol EA, Sule S, Mozsar J, Gonsalves D, Burr TJ (1999) Transformation of five grape rootstocks with plant virus genes and a virE2 gene from Agrobacterium tumefaciens. In Vitro Cell Dev Biol 35:226–231

    CAS  Google Scholar 

  • Yamamoto T, Iketani H, Ieki H, Nishizawa Y, Notsuka K, Hibl T, Hayashi T, Matsuta N (2000) Transgenic grapevine plants expressing a rice chitinase and enhance resistance to fungal pathogens. Plant Cell Rep 19:639–646

    Article  CAS  Google Scholar 

  • Yamamoto T, Nakajima I, Matsuta N (2003) Transgenic grape. In: Jaiwal PK, Singh RP (eds) Improvement of fruits. Plant genetic engineering, vol 6. Sci Tech, Singapore, pp 65–82

    Google Scholar 

  • Yancheva SD, Shlizerman LA, Golubowicz S, Yabloviz Z, Perl A, Hanania U, Flaishman MA (2006) The use of green fluorescent protein (GFP) improves Agrobacterium-mediated transformation of ‘Spadona’ pear (Pyrus communis L.). Plant Cell Rep 25:183–189

    Article  PubMed  CAS  Google Scholar 

  • Yao JL, Wu JH, Gleave AP, Morris BAM (1996) Transformation of citrus embryogenic cells using particle bombardment and production of transgenic embryos. Plant Sci 113:175–183

    Article  CAS  Google Scholar 

  • Yeh S, Bau HJ, Kung YJ, Yu TA (2007) Papaya. In: Pua EC, Davey MR (eds) Transgenic crops V. Biotechnology in agriculture and forestry. Springer, Heidelberg, pp 73–96

    Google Scholar 

  • Yepes LM, Aldwinckle HS (1994a) Factors that affect leaf regeneration efficiency in apple, and effect of antibiotics in morphogenesis. Plant Cell Tiss Org Cult 37:257–269

    CAS  Google Scholar 

  • Yepes LM, Aldwinckle HS (1994b) Micropropagation of 13 Malus cultivars and rootstocks, and effect of antibiotics on proliferation. Plant Growth Reg 15:55–67

    Article  CAS  Google Scholar 

  • Zanek MC, Reyes CA, Cervera M, Pena EJ, Velazquez K, Costa N, Plata MI, Grau O, Pena L, Garcia ML (2008) Genetic transformation of sweet orange with the coat protein gene of Citrus psorosis virus and evaluation of resistance against the virus. Plant Cell Rep 27:57–66

    Article  PubMed  CAS  Google Scholar 

  • Zeldin E, Jury TP, Serres R, McCown BH (2002) Tolerance to the herbicide glufosinate in transgenic cranberry (Vaccinium macrocarpon Ait.) and enhancement of tolerance in progeny. J Am Soc Hort Sci 127:502–507

    CAS  Google Scholar 

  • Zhang SC, Tian L, Svircev A, Brown DCW, Sibbald S, Schneider KE, Barszcz ES, Malutan T, Wen R, Sanfaçon H (2006) Engineering resistance to Plum pox virus (PPV) through the expression of PPV-specific hairpin RNAs in transgenic plants. Can J Plant Pathol 28:263–270

    Article  Google Scholar 

  • Zhang Z, Sun AJ, Cong Y, Sheng BC, Yao QH, Cheng ZM (2006) Agrobacterium-mediated transformation of the apple rootstock Malus micromalus Makino with the ROLC gene. In Vitro Cell Dev Biol-Plant 42:491–497

    Article  CAS  Google Scholar 

  • Zhao Y, Liu QZ, Davis RE (2004) Transgene expression in strawberries driven by a heterologous phloem-specific promoter. Plant Cell Rep 23:224–230

    Article  PubMed  CAS  Google Scholar 

  • Zhu LH, Li XY, Ahlman A, Xue ZT, Welander M (2004) The use of mannose as a selection agent in transformation of the apple rootstock M26 via Agrobacterium tumefaciens. Acta Hort 663:503–506

    CAS  Google Scholar 

  • Zhu LH, Li XY, Nyqvist M, Welander M (2007) Improvement of rooting and reduction in plant height in apple and pear through gene transfer. Acta Hort 738:353–359

    Google Scholar 

  • Zhu LH, Li XY, Welander M (2008) Overexpression of the Arabidopsis gai gene in apple significantly reduces plant size. Plant Cell Rep 27:289–296

    Article  PubMed  CAS  Google Scholar 

  • Zhu YJ, Agbayani R, Moore PH (2007) Ectopic expression of Dahlia merckii defensin DmAMP1 improves papaya resistance to Phytophthora palmivora by reducing pathogen vigor. Planta 226:87–97

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magda-Viola Hanke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hanke, MV., Flachowsky, H. (2010). Fruit Crops. In: Kempken, F., Jung, C. (eds) Genetic Modification of Plants. Biotechnology in Agriculture and Forestry, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02391-0_17

Download citation

Publish with us

Policies and ethics