Skip to main content

Triticeae Cereals

  • Chapter
  • First Online:
Genetic Modification of Plants

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 64))

Abstract

The Triticeae cereals comprise wheat, barley, rye and triticale. Together, these crops provide a major proportion of the food and feed produced and consumed worldwide. Biotechnological approaches to the improvement of Triticeae cereals may thus largely contribute to cope with the challenging future demands on agricultural production. This chapter provides comprehensive information on technologies for the generation and characterization of stably transgenic Triticeae plants and on available systems of transgene expression and targeted knock-down of endogenous genes. Further, transgenic approaches to the improvement of Triticeae crops are reviewed with particular emphasis on: (i) tolerance to abiotic stress such as drought, salinity and heavy metal toxicity, (ii) resistance to viral and fungal pathogens and pathogenic insects and (iii) grain quality features and the development of transgenic lines to produce valuable molecules for industrial and pharmaceutical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755

    Article  PubMed  CAS  Google Scholar 

  • Alfonso J, Ortego F, Sanchez-Monge R, Garcia-Casado G, Pujol I, Castanera P, Salcedo G (1997) Wheat and barley inhibitors active towards α-amylase and trypsin-like activities from Spodoptera frugiperda. J Chem Ecol 23:1729–1741

    Article  CAS  Google Scholar 

  • Altpeter F, Vasil V, Srivastava V, Vasil IK (1996) Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 gene into wheat. Nat Biotechnol 14:1155–1159

    Article  PubMed  CAS  Google Scholar 

  • Altpeter F, Diaz I, McAuslane H, Gaddour K, Carbonero P, Vasil IK (1999) Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe. Mol Breed 5:53–63

    Article  CAS  Google Scholar 

  • Altpeter F, Varshney A, Abderhalden O, Douchkov D, Sautter C, Kumlehn J, Dudler R, Schweizer P (2005) Stable expression of a defense-related gene in wheat epidermis under transcriptional control of a novel promoter confers pathogen resistance. Plant Mol Biol 57:271–283

    Article  PubMed  CAS  Google Scholar 

  • Anand A, Zhou T, Trick HN, Gill BS, Bockus WW, Muthukrishnan S (2003) Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. J Exp Bot 54:1101–1111

    Article  PubMed  CAS  Google Scholar 

  • Altpeter F, Vasil V, Srivastava V, Vasil IK (1996) Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 gene into wheat. Nat Biotechnol 14:1155–1159

    Article  PubMed  CAS  Google Scholar 

  • Bahieldin A, Mahfouz HT, Eissa HF, Saleh OM, Ramadan AM, Ahmed IA, Dyer WE, El-Itriby HA, Madkour MA (2005) Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol Plant 123:421–427

    Article  CAS  Google Scholar 

  • Balconi C, Lanzanova C, Conti E, Triulzi T, Forlani F, Cattaneo M, Lupotto E (2007) Fusarium head blight evaluation in wheat transgenic plants expressing the maize b-32 antifungal gene. Eur J Plant Pathol 117:129–40

    Article  CAS  Google Scholar 

  • Barcelo P, Hagel C, Becker D, Martin A, Loerz H (1994) Transgenic cereal (tritordeum) plants obtained at high efficiency by microprojectile bombardment of inflorescence tissue. Plant J 5:583–592

    Article  PubMed  CAS  Google Scholar 

  • Barro F, Rooke L, Bekes F, Gras P, Tatham AS, Fido R, Lazzeri PA, Shewry PR, Barcelo P (1997) Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nat Biotechnol 15:1295–1299

    Article  PubMed  CAS  Google Scholar 

  • Becker D, Brettschneider R, Loerz H (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J 5:299–307

    Article  PubMed  CAS  Google Scholar 

  • Bedford MR (1995) Mechanism of action and potential environmental benefits from the use of feed enzymes. Anim Feed Sci Technol 53:145–155

    Article  CAS  Google Scholar 

  • Biosicherheit (2008) www.biosicherheit.de/de/aktuell/508.doku.html. Accessed 28 Nov 2008

  • Bieri S, Potrykus I, Fütterer J (2000) Expression of active barley seed ribosome-inactivating protein in transgenic wheat. Theor Appl Genet 100:755–763

    Article  CAS  Google Scholar 

  • Bieri S, Potrykus P, Fütterer J (2003) Effects of combined expression of antifungal barley seed proteins in transgenic wheat on powdery mildew infection. Mol Breed 11:37–48

    Article  CAS  Google Scholar 

  • Bliffeld M, Mundy J, Potrykus I, Fütterer J (1999) Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor Appl Genet 98:1079–1086

    Article  CAS  Google Scholar 

  • Bol JF, Buchel AS, Knoester M, Baladin T, van Loon LC, Linthorst HJM (1996) Regulation of the expression of plant defence genes. Plant Growth Regul 18:87–91

    Article  CAS  Google Scholar 

  • Bommineni VR, Jauhar PP, Peterson TS (1997) Transgenic durum wheat by microprojectile bombardment of isolated scutella. J Hered 88:475–481

    Article  Google Scholar 

  • Brereton HM, Chamberlain D, Yang R, Tea M, McNeil S, Coster DJ, Williams KA (2007) Single chain antibody fragments for ocular use produced at high levels in a commercial wheat variety. J Biotechnol 129:539–546

    Article  PubMed  CAS  Google Scholar 

  • Brinch-Pedersen H, Olesen A, Rasmussen SK, Holm PB (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breed 6:195–206

    Article  CAS  Google Scholar 

  • Brinch-Pederson H, Hatzeck F, Sorensen LD, Holm PB (2003) Concerted action of endogenous and heterologous phytase on phytic acid degradation in seed of transgenic wheat (Triticum aestivum L.). Transgenic Res 12:649–659

    Article  Google Scholar 

  • Castillo AM, Vasil V, Vasil IK (1994) Rapid production of fertile transgenic plants of rye (Secale cereale L.). Bio/Technology 12:1366–1371

    Article  CAS  Google Scholar 

  • Chen Y-P, Li-Ping Xing L-P, Wu G-J, Wang H-Z, Wang X-E, Cao A-Z, Chen P-D (2007) Plastidial glutathione reductase from Haynaldia villosa is an enhancer of powdery mildew resistance in wheat (Triticum aestivum). Plant Cell Physiol 48:1702–1712

    Article  PubMed  CAS  Google Scholar 

  • Chen WP, Chen PD, Liu DJ, Kynast R, Friebe B, Velazhahan R, Muthukrishnan S, Gill BS (1999) Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theor Appl Genet 99:755–760

    Article  CAS  Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou, Hironaka, C, Duncan, DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    PubMed  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-Microbe Interactions: Shaping the evolution of the plant immune response. Cell 124:803–814

    Article  PubMed  CAS  Google Scholar 

  • Cho MJ, Choi HW, Buchanan BB, Lemaux PG (1999) Inheritance of tissue-specific expression of barley hordein promoter-uidA fusions in transgenic barley plants. Theor Appl Gen 98:1253–1262

    Article  CAS  Google Scholar 

  • Clausen M, Kräuter R, Schachermayr G, Potrykus I, Sautter C (2000) Antifungal activity of a virally encoded gene in transgenic wheat. Nat Biotechnol 18:446–449

    Article  PubMed  CAS  Google Scholar 

  • Commandeur U, Twyman RM, Fischer R (2003) The biosafety of molecular farming in plants. AgBiotechNet 5:1–9

    Google Scholar 

  • Cornelissen BJC, Does M, Melchers LS (1996) Strategies of molecular resistance breedings (and transgenic plants). In: Sneh B, Jabaji-Hare S, Neate S, Deist G (eds) Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and control. Kluwer, Rotterdam, pp 529–536

    Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702

    PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci USA 101:15249–15254

    Article  PubMed  CAS  Google Scholar 

  • FAO (2008) http://www.fao.org/es/ess/top/commodity.html?lang=en&item=44&year=2005. Accessed 28 Nov 2008

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258

    Article  PubMed  CAS  Google Scholar 

  • Furtado A, Henry RJ (2005) The wheat Em promoter drives reporter gene expression in embryo and aleurone tissue of transgenic barley and rice. Plant Biotechnol J 3:421–434

    Article  PubMed  CAS  Google Scholar 

  • Gadaleta A, Blechl AE, Nguyen S, Cardone MF, Ventura M, Quick JS, Blanco A (2008) Stably expressed D-genome-derived HMW glutinin subunit genes transformed into different durum wheat genotypes change dough mixing properties. Mol Breed 22:267–279

    Article  CAS  Google Scholar 

  • gmoinfo (2008) http://gmoinfo.jrc.ec.europa.eu/gmp_browse.aspx. Accessed 28 Nov 2008

  • Gruszka Vendruscolo EC, Schuster I, Pileggi M, Scapim CA, Correa Molinari HB, Marur CJ, Esteves Vieira LG (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164:1367–1376

    Article  CAS  Google Scholar 

  • Hensel G, Valkov V, Middlefell-Williams J, Kumlehn J (2008) Efficient generation of transgenic barley: the way forward to modulate plant--microbe interactions. J Plant Physiol 165:71–82

    Article  PubMed  CAS  Google Scholar 

  • Himmelbach A, Zierold U, Hensel G, Riechen R, Douchkov D, Schweizer P, Kumlehn J (2007) A set of modular binary vectors for transformation of cereals. Plant Physiol 145:1192–1200

    Article  PubMed  CAS  Google Scholar 

  • Holme IB, Brinch-Pedersen H, Lange M, Holm PB (2006) Transformation of barley (Hordeum vulgare L.) by Agrobacterium tumefaciens infection of in vitro cultured ovules. Plant Cell Rep 25:1325–1335

    Article  PubMed  CAS  Google Scholar 

  • Holme IB, Brinch-Pedersen H, Lang M, Holm PB (2008) Transformation of different barley (Hordeum vulgare L.) cultivars by Agrobacterium tumefaciens infection of in vitro cultured ovules. Plant Cell Rep 27:1833–1840

    Article  PubMed  CAS  Google Scholar 

  • Hong B, Uknes SJ, Ho THD (1988) Cloning and characterizationof a cDNA encoding a mRNA rapidly-induced by ABA in barley aleurone layers. Plant Mol Biol 11:495–506

    Article  CAS  Google Scholar 

  • Horvath H, Huang J, Wong O, Kohl E, Okita T, Kannangara CG, von Wettstein D (2000) The production of recombinant proteins in transgenic barley grains. Proc Natl Acad Sci USA 97:1914–1919

    Article  PubMed  CAS  Google Scholar 

  • Horvath H, Rostoks N, Brueggeman R, Steffenson B, von Wettstein D, Kleinhofs A (2003) Genetically engineered stem rust resistance in barley using the Rpg1 gene. Proc Natl Acad Sci USA 100:364–369

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Rodriguez RL, Hagie F (2006) Expression of human milk proteins in transgenic plants. US Patent 6991824

    Google Scholar 

  • International Grains Council (2009) http://www.igc.org.uk/en/grainsupdate/igcsd.aspx. Accessed 22 June 2009

  • Jackson SA, Zhang P, Chen WP, Phillips RL, Friebe B, Muthukrishnan S, Gill B S (2001) High-resolution structural analysis of biolistic transgene integration into the genome of wheat. Theor Appl Genet 103:56–62

    Article  CAS  Google Scholar 

  • Jaehne A, Becker D, Brettschneider H, Loerz H (1994) Regeneration of transgenic, microspore-derived, fertile barley. Theor Appl Genet 89:525–533

    Google Scholar 

  • Janni M, Sella L, Favaron F, Blechl AE, Lorenzo GD, D'Ovidio R (2008) The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Mol Plant Microbe Interact 21:171–177

    Article  PubMed  CAS  Google Scholar 

  • Jensen AB, Leah R, Chaudhry B, Mundy J (1999) Ribosome inactivating proteins: structure, function, and engineering. In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC, Boca Raton, pp 235–245

    Google Scholar 

  • Jensen LG, Olsen O, Kops O, Wolf N, Thomsen KK, von Wettstein D (1996) Transgenic barley expressing a protein-engineered, thermostable (1,3-1,4)-beta-glucanase during germination. Proc Natl Acad Sci USA 93:3487–3491

    Article  PubMed  CAS  Google Scholar 

  • Jing W, Demcoe AR, Vogel HJ (2003) Conformation of a bactericidal domain of puroindoline a: structure and mechanism of action of a 13-residue antimicrobial peptide. J Bacteriol 186:4938–4947

    Article  CAS  Google Scholar 

  • Joensuu JJ, Kotiaho M, Teeri TH, Valmu L, Nuutila AM, Oksman-Caldentey KM, Niklander-Teeri V (2006) Glycosylated F4 (K88) fimbrial adhesin FaeG expressed in barley endosperm induces ETEC-neutralizing antibodies in mice. Transgenic Res 15:359–373

    Article  PubMed  CAS  Google Scholar 

  • Juanpere J, Perez-Vendrell AM, Brufau J (2004) Effect of microbial phytase on broilers fed barley-based diets in the presence or not of endogenous phytase. Animal Feed Sci Technol 115:265–279

    Article  CAS  Google Scholar 

  • Kihara M, Okada Y, Kuroda H, Saeki K, Yoshigi N, Ito K (2000) Improvement of ß-amylase thermostability in transgenic barley seeds and transgene stability in progeny. Mol Breed 6:511–517

    Google Scholar 

  • Kimura M, Tokai T, Matsumoto G, Fujimura M, Hamamoto H, Yoneyama K, Shibata T, Yamaguchi I Trichothecene nonproducer Gibberella species have both functional and nonfunctional 3-O-acetyltransferase genes. Genetics 163:677–684

    Google Scholar 

  • Kumlehn J, Serazetdinova L, Hensel G, Becker D, Loerz H (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol J 4:251–261

    Article  PubMed  CAS  Google Scholar 

  • Lamacchia C, Shewry PR, Fonzo ND, Forsyth JL, Harris N, Lazzeri PA, Napier JA, Halford NG, Barcelo P (2001) Endosperm-specific activity of a storage protein gene promoter in transgenic wheat seed. J Exp Bot 52:243–250

    Article  PubMed  CAS  Google Scholar 

  • Leah R, Tommerup H, Svendsen I, Mundys J (1991) Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem 266:1564–1573

    PubMed  CAS  Google Scholar 

  • Leckband G, Lörz H (1998) Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor Appl Genet 96:1004–1012

    Article  CAS  Google Scholar 

  • Luo L, Zhang J, Yang G, Li Y, Li K, He G (2008) Expression of puroindoline a enhances leaf rust resistance in transgenic tetraploid wheat. Mol Biol Rep 35:195–200

    Article  PubMed  CAS  Google Scholar 

  • Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805

    Article  PubMed  CAS  Google Scholar 

  • Mackintosh CA, Lewis J, Radmer LE, Shin S, Heinen SJ, Smith LA, Wyckoff MN, Dill-Macky R, Evans CK, Kravchenko S, Baldridge GD, Zeyen RJ, Muehlbauer GJ (2007) Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Rep 26:479–488

    Article  PubMed  CAS  Google Scholar 

  • Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant Microbe Interact 19:123–129

    Article  PubMed  CAS  Google Scholar 

  • Malathi V, Devegowda G (2001) In vitro evaluation of nonstarch polysaccharide digestibility of feed ingredients by enzymes. Poult Sci 80:302–305

    PubMed  CAS  Google Scholar 

  • Manoharan M, Dahleen LS, Hohn TM, Neate SM, Yu X-H, Alexander NJ, McCormick SP, Bregitzer P, Schwarz PB, Horsley RD (2006) Expression of 3-OH trichothecene acetyltransferase in barley (Hordeum vulgare L.) and effects on deoxynivalenol. Plant Sci 171:699–706

    Article  CAS  Google Scholar 

  • Matthews PR, Wang MB, Waterhouse PM, Thornton S, Fieg SJ, Gubler F, Jacobsen JV (2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent 'twin T-DNAs' on a standard Agrobacterium transformation vector. Mol Breed 7:195–202

    Article  CAS  Google Scholar 

  • McGrath PF, Vincent JR, Lei C-H, Pawlowski WP, Torbert KA, Gu W, Kaeppler HF, Wan Y, Lemaux PG, Rines HR, DA Somers, Larkins BA, Lister RM (1997) Coat protein-mediated resistance to isolates of barley yellow dwarf in oats and barley. Eur J Plant Pathol 103:695–710

    Article  CAS  Google Scholar 

  • Nehra NS, Chibbar RN, Leung N, Caswell K, Millard C, Steinhauer L, Baga M, Kartha KK (1994) Self-fertile transgenic wheat plants regenerated from isolated scuteller tissues following microprojectile bombardment with two distinct gene constructs. Plant J 5:285–297

    Article  CAS  Google Scholar 

  • NRCS (2005) The PLANTS Database, ver 3.5. http://plants.usda.gov. Accessed 28 Nov 2008

  • Nuutila AM, Ritala A, Skadsen RW, Mannonen L, Kauppinen V (1999) Expression of fungal thermotolerant endo-1,4-beta-glucanase in transgenic barley seeds during germination. Plant Mol Biol 41:777–783

    Article  PubMed  CAS  Google Scholar 

  • Okubara PA, Blechl AE, McCormick SP, Alexander NJ, Dill-Macky R, Hohn TM (2002) Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theor Appl Genet 106:74–83

    PubMed  CAS  Google Scholar 

  • Oldach KH, Becker D, Lörz H (2001) Heterologous expression of genes mediating enhanced fungal resistance in transgenic wheat. Mol Plant Microbe Interact 14:832–838

    Article  PubMed  CAS  Google Scholar 

  • Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    Article  PubMed  CAS  Google Scholar 

  • Patel M, Johnson JS, Brettell RIS, Jacobsen J, Xue GP (2000) Transgenic barley expressing a fungal xylanase gene in the endosperm of the developing grains. Mol Breed 6:113–123

    Article  CAS  Google Scholar 

  • Popelka JC, Altpeter F (2003) Agrobacterium tumefaciens-mediated genetic transformation of rye (Secale cereale L.). Mol Breed 11:203–211

    Article  CAS  Google Scholar 

  • Popelka JC, Xu J, Altpeter F (2003) Generation of rye plants with low copy number after biolistic gene transfer and production of instantly marker-free transgenic rye. Transgenic Res 12:587–596

    Article  PubMed  CAS  Google Scholar 

  • Primavesi LF, Wu H, Mudd EA, Day A, Jones HD (2008) Visualisation of plastids in endosperm, pollen and roots of transgenic wheat expressing modified GFP fused to transit peptides from wheat SSU RubisCO, rice FtsZ, and maize ferredoxin III proteins. Transgenic Res 17:529–543

    Article  PubMed  CAS  Google Scholar 

  • Ramachandra Reddy A, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  PubMed  CAS  Google Scholar 

  • Rasco-Gaunt S, Riley A, Cannell M, Barcelo P, Lazzeri PA (2001) Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment. J Exp Bot 52:865–874

    PubMed  CAS  Google Scholar 

  • Ritala A, Wahlstrom EH, Holkeri H, Hafren A, Makelainen K, Baez J, Makinen K, Nuutila AM (2008) Production of a recombinant industrial protein using barley cell cultures. Protein Expr Purif 59:274–281

    Article  PubMed  CAS  Google Scholar 

  • Romeis J, Waldburger M, Streckeisen P, Hogervorst PAM, Keller B, Winzeler M, Bigler F (2007) Performance of transgenic spring wheat plants and effects on non-target organisms under glasshouse and semi-field conditions. J Appl Entomol 131:593–602

    Article  Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51:81–88

    Article  PubMed  CAS  Google Scholar 

  • Salvo-Garrido H, Travella S, Bilham LJ, Harwood WA, Snape JW (2004) The distribution of transgene insertion sites in barley determined by physical and genetic mapping. Genetics 167:131–1379

    Article  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminium-activated malate transporter. Plant J 37:645–653

    Article  PubMed  CAS  Google Scholar 

  • Schlaich T, Urbaniak BM, Malgras N, Ehler E, Birrer C, Meier L, Sautter C (2006) Increased field resistance to Tilletia caries provided by a specific antifungal virus gene in genetically engineered wheat. Plant Biotechnol J 4:63–75

    Article  PubMed  CAS  Google Scholar 

  • Schuenmann PHD, Coia G, Waterhouse PM (2002) Biopharming the SimpliREDâ„¢ HIV diagnostic reagent in barley, potato and tobacco. Mol Breed 9:113–121

    Article  CAS  Google Scholar 

  • Sharp GL, Martin JM, Lanning SP, Blake NK, Brey CW, Sivamani E, Qu R, Talbert LE (2002) Field evaluation of transgenic and classical sources of wheat streak mosaic virus resistance. Crop Sci 42:105–110

    Article  PubMed  Google Scholar 

  • Shewry PR, Powers S, Field JM, Fido RJ, Jones HD, Arnold GM, West J, Lazzeri PA, Barcelo P, Barro F, Tatham AS, Bekes F, Butow B, Darlington H (2006) Comparative field performance over 3 years and two sites of transgenic wheat lines expressing HMW subunit genes. Theor Appl Genet 113:128–136

    Article  PubMed  CAS  Google Scholar 

  • Shin S, Mackintosh CA, Lewis J, Heinen SJ, Radmer L, Dill-Macky R, Baldridge GD, Zeyen RJ, Muehlbauer GJ (2008) Transgenic wheat expressing a barley class II chitinase gene has enhanced resistance against Fusarium graminearum. J Exp Bot 59:2371–2378

    Article  PubMed  CAS  Google Scholar 

  • Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho T-HD, Qu R (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9

    Article  PubMed  CAS  Google Scholar 

  • Skadsen RW, Sathish P, Federico ML, Abebe T, Fu J, Kaeppler HF (2002) Cloning of the promotor for a novel barley gene, Lem1, and its organ-specific promotion of Gfp expression in lemma and palea. Plant Mol Biol 49:545–555

    Article  PubMed  CAS  Google Scholar 

  • Somleva MN, Blechl AE (2006) The barley Lem1 gene promoter drives expression specifically in outer floret organs at anthesis in transgenic wheat. Cereal Res Commun 4:665–671

    Google Scholar 

  • Stahl R, Horvath H, Van Fleet J, Voetz M, von Wettstein D, Wolf N (2002) T-DNA integration into the barley genome from single and double cassette vectors. Proc Natl Acad Sci USA 99:2146–2151

    Article  PubMed  CAS  Google Scholar 

  • Stirpe F, Barbieri L, Battelli LG, Soria M, Lappi DA (1992) Ribosome-inactivating proteins from plants: present status and future prospects. Bio/Technology 10:405–412

    Article  PubMed  CAS  Google Scholar 

  • Stoeger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J, Williams S, Keen D, Perrin Y, Christou P (2000) Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol 42:583–590

    Article  Google Scholar 

  • Stoeger E, Williams S, Christou P, Down RE, Gatehouse JA (1999) Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae. Mol Breed 5:65–73

    Article  Google Scholar 

  • Stoeger E, Williams S, Keen D, Christou P (1999) Constitutive versus seed specific expression in transgenic wheat: temporal and spatial control. Transgenic Res 8:73–82

    Article  Google Scholar 

  • Tilahun A, Skadsen R, Patel M, Kaeppler H (2006) The Lem2 gene promoter of barley directs cell- and development-specific expression of gfp in transgenic plants. Plant Biotechnol J 4:35–44

    Article  CAS  Google Scholar 

  • Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376

    Article  CAS  Google Scholar 

  • Tobias DJ, Manoharan M, Pritsch C, Dahleen LS (2007) Co-bombardment, integration and expression of rice chitinase and thaumatin-like protein genes in barley (Hordeum vulgare cv. Conlon) Plant Cell Rep 26:631–639

    Article  PubMed  CAS  Google Scholar 

  • Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789

    Article  PubMed  CAS  Google Scholar 

  • Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578

    Article  PubMed  CAS  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122

    Article  PubMed  CAS  Google Scholar 

  • US Grains Council (2006) http://www.grains.org/page.ww?section=Barley%2C+Corn+%26+Sorghum&name=Barley. Accessed 28 Nov 2008

  • Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Biotechnology 10:667–674

    Article  CAS  Google Scholar 

  • Vickers CE, Xue G, Gresshoff PM (2006) A novel cis-acting element, ESP, contributes to high-level endosperm-specific expression in an oat globulin promoter. Plant Mol Biol 62:195–214

    Article  PubMed  CAS  Google Scholar 

  • Wan Y, Lemaux PG (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol 104:37–48

    PubMed  CAS  Google Scholar 

  • Wang MB, Abbott DC, Upadhyaya NM, Jacobsen JV, Waterhouse PM (2001) Agrobacterium tumefaciens-mediated transformation of an elite Australian barley cultivar with virus resistance and reporter genes. Aust J Plant Physiol 28:149–156

    Google Scholar 

  • Wieser H, Seilmeier W, Kieffer R, Altpeter F (2005) Flour protein composition and functional properties of transgenic rye lines expressing HMW subunit genes of wheat. Cereal Chem 82:594–600

    Article  CAS  Google Scholar 

  • Wu H, McCormac AC, Elliott MC, Chen DF (1998) Agrobacterium-mediated stable transformation of cell suspension cultures of barley (Hordeum vulgare L.). Plant Cell Tiss Org Cult 54:161–171

    Article  CAS  Google Scholar 

  • Wu H, Sparks C, Amoah B, Jones HD (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21:659–668

    PubMed  CAS  Google Scholar 

  • Xue GP, Patel M, Johnson JS, Smyth DJ, Vickers CE (2003) Selectable marker-free transgenic barley producing a high level of cellulase (1,4-beta-glucanase) in developing grains. Plant Cell Rep 21:1088–1094

    Article  PubMed  CAS  Google Scholar 

  • Xue ZY, Zhi D-Y, Xue G-P, Zhang H, Zhao Y-X, Xia G-M (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859

    Article  CAS  Google Scholar 

  • Zhang S, Cho M-J, Koprek T, Yun R, Bregitzer P, Lemaux PG (1999) Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings. Plant Cell Rep 18:959–966

    Article  CAS  Google Scholar 

  • Zimny J, Becker D, Brettschneider R, Loerz H (1995) Fertile, transgenic triticale (X triticosecale Wittmack). Mol Breed 1:155–164

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Kumlehn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kumlehn, J., Zimmermann, G., Berger, C., Marthe, C., Hensel, G. (2010). Triticeae Cereals. In: Kempken, F., Jung, C. (eds) Genetic Modification of Plants. Biotechnology in Agriculture and Forestry, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02391-0_16

Download citation

Publish with us

Policies and ethics