Triticeae Cereals

  • Jochen KumlehnEmail author
  • Grit Zimmermann
  • Carolin Berger
  • Cornelia Marthe
  • Goetz Hensel
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 64)


The Triticeae cereals comprise wheat, barley, rye and triticale. Together, these crops provide a major proportion of the food and feed produced and consumed worldwide. Biotechnological approaches to the improvement of Triticeae cereals may thus largely contribute to cope with the challenging future demands on agricultural production. This chapter provides comprehensive information on technologies for the generation and characterization of stably transgenic Triticeae plants and on available systems of transgene expression and targeted knock-down of endogenous genes. Further, transgenic approaches to the improvement of Triticeae crops are reviewed with particular emphasis on: (i) tolerance to abiotic stress such as drought, salinity and heavy metal toxicity, (ii) resistance to viral and fungal pathogens and pathogenic insects and (iii) grain quality features and the development of transgenic lines to produce valuable molecules for industrial and pharmaceutical use.


Powdery Mildew Fusarium Head Blight Leaf Rust Late Embryogenesis Abundant Classic Swine Fever Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755PubMedCrossRefGoogle Scholar
  2. Alfonso J, Ortego F, Sanchez-Monge R, Garcia-Casado G, Pujol I, Castanera P, Salcedo G (1997) Wheat and barley inhibitors active towards α-amylase and trypsin-like activities from Spodoptera frugiperda. J Chem Ecol 23:1729–1741CrossRefGoogle Scholar
  3. Altpeter F, Vasil V, Srivastava V, Vasil IK (1996) Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 gene into wheat. Nat Biotechnol 14:1155–1159PubMedCrossRefGoogle Scholar
  4. Altpeter F, Diaz I, McAuslane H, Gaddour K, Carbonero P, Vasil IK (1999) Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe. Mol Breed 5:53–63CrossRefGoogle Scholar
  5. Altpeter F, Varshney A, Abderhalden O, Douchkov D, Sautter C, Kumlehn J, Dudler R, Schweizer P (2005) Stable expression of a defense-related gene in wheat epidermis under transcriptional control of a novel promoter confers pathogen resistance. Plant Mol Biol 57:271–283PubMedCrossRefGoogle Scholar
  6. Anand A, Zhou T, Trick HN, Gill BS, Bockus WW, Muthukrishnan S (2003) Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. J Exp Bot 54:1101–1111PubMedCrossRefGoogle Scholar
  7. Altpeter F, Vasil V, Srivastava V, Vasil IK (1996) Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 gene into wheat. Nat Biotechnol 14:1155–1159PubMedCrossRefGoogle Scholar
  8. Bahieldin A, Mahfouz HT, Eissa HF, Saleh OM, Ramadan AM, Ahmed IA, Dyer WE, El-Itriby HA, Madkour MA (2005) Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol Plant 123:421–427CrossRefGoogle Scholar
  9. Balconi C, Lanzanova C, Conti E, Triulzi T, Forlani F, Cattaneo M, Lupotto E (2007) Fusarium head blight evaluation in wheat transgenic plants expressing the maize b-32 antifungal gene. Eur J Plant Pathol 117:129–40CrossRefGoogle Scholar
  10. Barcelo P, Hagel C, Becker D, Martin A, Loerz H (1994) Transgenic cereal (tritordeum) plants obtained at high efficiency by microprojectile bombardment of inflorescence tissue. Plant J 5:583–592PubMedCrossRefGoogle Scholar
  11. Barro F, Rooke L, Bekes F, Gras P, Tatham AS, Fido R, Lazzeri PA, Shewry PR, Barcelo P (1997) Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nat Biotechnol 15:1295–1299PubMedCrossRefGoogle Scholar
  12. Becker D, Brettschneider R, Loerz H (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J 5:299–307PubMedCrossRefGoogle Scholar
  13. Bedford MR (1995) Mechanism of action and potential environmental benefits from the use of feed enzymes. Anim Feed Sci Technol 53:145–155CrossRefGoogle Scholar
  14. Biosicherheit (2008) Accessed 28 Nov 2008
  15. Bieri S, Potrykus I, Fütterer J (2000) Expression of active barley seed ribosome-inactivating protein in transgenic wheat. Theor Appl Genet 100:755–763CrossRefGoogle Scholar
  16. Bieri S, Potrykus P, Fütterer J (2003) Effects of combined expression of antifungal barley seed proteins in transgenic wheat on powdery mildew infection. Mol Breed 11:37–48CrossRefGoogle Scholar
  17. Bliffeld M, Mundy J, Potrykus I, Fütterer J (1999) Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor Appl Genet 98:1079–1086CrossRefGoogle Scholar
  18. Bol JF, Buchel AS, Knoester M, Baladin T, van Loon LC, Linthorst HJM (1996) Regulation of the expression of plant defence genes. Plant Growth Regul 18:87–91CrossRefGoogle Scholar
  19. Bommineni VR, Jauhar PP, Peterson TS (1997) Transgenic durum wheat by microprojectile bombardment of isolated scutella. J Hered 88:475–481CrossRefGoogle Scholar
  20. Brereton HM, Chamberlain D, Yang R, Tea M, McNeil S, Coster DJ, Williams KA (2007) Single chain antibody fragments for ocular use produced at high levels in a commercial wheat variety. J Biotechnol 129:539–546PubMedCrossRefGoogle Scholar
  21. Brinch-Pedersen H, Olesen A, Rasmussen SK, Holm PB (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breed 6:195–206CrossRefGoogle Scholar
  22. Brinch-Pederson H, Hatzeck F, Sorensen LD, Holm PB (2003) Concerted action of endogenous and heterologous phytase on phytic acid degradation in seed of transgenic wheat (Triticum aestivum L.). Transgenic Res 12:649–659CrossRefGoogle Scholar
  23. Castillo AM, Vasil V, Vasil IK (1994) Rapid production of fertile transgenic plants of rye (Secale cereale L.). Bio/Technology 12:1366–1371CrossRefGoogle Scholar
  24. Chen Y-P, Li-Ping Xing L-P, Wu G-J, Wang H-Z, Wang X-E, Cao A-Z, Chen P-D (2007) Plastidial glutathione reductase from Haynaldia villosa is an enhancer of powdery mildew resistance in wheat (Triticum aestivum). Plant Cell Physiol 48:1702–1712PubMedCrossRefGoogle Scholar
  25. Chen WP, Chen PD, Liu DJ, Kynast R, Friebe B, Velazhahan R, Muthukrishnan S, Gill BS (1999) Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theor Appl Genet 99:755–760CrossRefGoogle Scholar
  26. Cheng M, Fry JE, Pang S, Zhou, Hironaka, C, Duncan, DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980PubMedGoogle Scholar
  27. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-Microbe Interactions: Shaping the evolution of the plant immune response. Cell 124:803–814PubMedCrossRefGoogle Scholar
  28. Cho MJ, Choi HW, Buchanan BB, Lemaux PG (1999) Inheritance of tissue-specific expression of barley hordein promoter-uidA fusions in transgenic barley plants. Theor Appl Gen 98:1253–1262CrossRefGoogle Scholar
  29. Clausen M, Kräuter R, Schachermayr G, Potrykus I, Sautter C (2000) Antifungal activity of a virally encoded gene in transgenic wheat. Nat Biotechnol 18:446–449PubMedCrossRefGoogle Scholar
  30. Commandeur U, Twyman RM, Fischer R (2003) The biosafety of molecular farming in plants. AgBiotechNet 5:1–9Google Scholar
  31. Cornelissen BJC, Does M, Melchers LS (1996) Strategies of molecular resistance breedings (and transgenic plants). In: Sneh B, Jabaji-Hare S, Neate S, Deist G (eds) Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and control. Kluwer, Rotterdam, pp 529–536Google Scholar
  32. Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702PubMedGoogle Scholar
  33. Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci USA 101:15249–15254PubMedCrossRefGoogle Scholar
  34. Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258PubMedCrossRefGoogle Scholar
  35. Furtado A, Henry RJ (2005) The wheat Em promoter drives reporter gene expression in embryo and aleurone tissue of transgenic barley and rice. Plant Biotechnol J 3:421–434PubMedCrossRefGoogle Scholar
  36. Gadaleta A, Blechl AE, Nguyen S, Cardone MF, Ventura M, Quick JS, Blanco A (2008) Stably expressed D-genome-derived HMW glutinin subunit genes transformed into different durum wheat genotypes change dough mixing properties. Mol Breed 22:267–279CrossRefGoogle Scholar
  37. gmoinfo (2008) Accessed 28 Nov 2008
  38. Gruszka Vendruscolo EC, Schuster I, Pileggi M, Scapim CA, Correa Molinari HB, Marur CJ, Esteves Vieira LG (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164:1367–1376CrossRefGoogle Scholar
  39. Hensel G, Valkov V, Middlefell-Williams J, Kumlehn J (2008) Efficient generation of transgenic barley: the way forward to modulate plant--microbe interactions. J Plant Physiol 165:71–82PubMedCrossRefGoogle Scholar
  40. Himmelbach A, Zierold U, Hensel G, Riechen R, Douchkov D, Schweizer P, Kumlehn J (2007) A set of modular binary vectors for transformation of cereals. Plant Physiol 145:1192–1200PubMedCrossRefGoogle Scholar
  41. Holme IB, Brinch-Pedersen H, Lange M, Holm PB (2006) Transformation of barley (Hordeum vulgare L.) by Agrobacterium tumefaciens infection of in vitro cultured ovules. Plant Cell Rep 25:1325–1335PubMedCrossRefGoogle Scholar
  42. Holme IB, Brinch-Pedersen H, Lang M, Holm PB (2008) Transformation of different barley (Hordeum vulgare L.) cultivars by Agrobacterium tumefaciens infection of in vitro cultured ovules. Plant Cell Rep 27:1833–1840PubMedCrossRefGoogle Scholar
  43. Hong B, Uknes SJ, Ho THD (1988) Cloning and characterizationof a cDNA encoding a mRNA rapidly-induced by ABA in barley aleurone layers. Plant Mol Biol 11:495–506CrossRefGoogle Scholar
  44. Horvath H, Huang J, Wong O, Kohl E, Okita T, Kannangara CG, von Wettstein D (2000) The production of recombinant proteins in transgenic barley grains. Proc Natl Acad Sci USA 97:1914–1919PubMedCrossRefGoogle Scholar
  45. Horvath H, Rostoks N, Brueggeman R, Steffenson B, von Wettstein D, Kleinhofs A (2003) Genetically engineered stem rust resistance in barley using the Rpg1 gene. Proc Natl Acad Sci USA 100:364–369PubMedCrossRefGoogle Scholar
  46. Huang X, Rodriguez RL, Hagie F (2006) Expression of human milk proteins in transgenic plants. US Patent 6991824Google Scholar
  47. International Grains Council (2009) Accessed 22 June 2009
  48. Jackson SA, Zhang P, Chen WP, Phillips RL, Friebe B, Muthukrishnan S, Gill B S (2001) High-resolution structural analysis of biolistic transgene integration into the genome of wheat. Theor Appl Genet 103:56–62CrossRefGoogle Scholar
  49. Jaehne A, Becker D, Brettschneider H, Loerz H (1994) Regeneration of transgenic, microspore-derived, fertile barley. Theor Appl Genet 89:525–533Google Scholar
  50. Janni M, Sella L, Favaron F, Blechl AE, Lorenzo GD, D'Ovidio R (2008) The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Mol Plant Microbe Interact 21:171–177PubMedCrossRefGoogle Scholar
  51. Jensen AB, Leah R, Chaudhry B, Mundy J (1999) Ribosome inactivating proteins: structure, function, and engineering. In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC, Boca Raton, pp 235–245Google Scholar
  52. Jensen LG, Olsen O, Kops O, Wolf N, Thomsen KK, von Wettstein D (1996) Transgenic barley expressing a protein-engineered, thermostable (1,3-1,4)-beta-glucanase during germination. Proc Natl Acad Sci USA 93:3487–3491PubMedCrossRefGoogle Scholar
  53. Jing W, Demcoe AR, Vogel HJ (2003) Conformation of a bactericidal domain of puroindoline a: structure and mechanism of action of a 13-residue antimicrobial peptide. J Bacteriol 186:4938–4947CrossRefGoogle Scholar
  54. Joensuu JJ, Kotiaho M, Teeri TH, Valmu L, Nuutila AM, Oksman-Caldentey KM, Niklander-Teeri V (2006) Glycosylated F4 (K88) fimbrial adhesin FaeG expressed in barley endosperm induces ETEC-neutralizing antibodies in mice. Transgenic Res 15:359–373PubMedCrossRefGoogle Scholar
  55. Juanpere J, Perez-Vendrell AM, Brufau J (2004) Effect of microbial phytase on broilers fed barley-based diets in the presence or not of endogenous phytase. Animal Feed Sci Technol 115:265–279CrossRefGoogle Scholar
  56. Kihara M, Okada Y, Kuroda H, Saeki K, Yoshigi N, Ito K (2000) Improvement of ß-amylase thermostability in transgenic barley seeds and transgene stability in progeny. Mol Breed 6:511–517Google Scholar
  57. Kimura M, Tokai T, Matsumoto G, Fujimura M, Hamamoto H, Yoneyama K, Shibata T, Yamaguchi I Trichothecene nonproducer Gibberella species have both functional and nonfunctional 3-O-acetyltransferase genes. Genetics 163:677–684Google Scholar
  58. Kumlehn J, Serazetdinova L, Hensel G, Becker D, Loerz H (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol J 4:251–261PubMedCrossRefGoogle Scholar
  59. Lamacchia C, Shewry PR, Fonzo ND, Forsyth JL, Harris N, Lazzeri PA, Napier JA, Halford NG, Barcelo P (2001) Endosperm-specific activity of a storage protein gene promoter in transgenic wheat seed. J Exp Bot 52:243–250PubMedCrossRefGoogle Scholar
  60. Leah R, Tommerup H, Svendsen I, Mundys J (1991) Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem 266:1564–1573PubMedGoogle Scholar
  61. Leckband G, Lörz H (1998) Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor Appl Genet 96:1004–1012CrossRefGoogle Scholar
  62. Luo L, Zhang J, Yang G, Li Y, Li K, He G (2008) Expression of puroindoline a enhances leaf rust resistance in transgenic tetraploid wheat. Mol Biol Rep 35:195–200PubMedCrossRefGoogle Scholar
  63. Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805PubMedCrossRefGoogle Scholar
  64. Mackintosh CA, Lewis J, Radmer LE, Shin S, Heinen SJ, Smith LA, Wyckoff MN, Dill-Macky R, Evans CK, Kravchenko S, Baldridge GD, Zeyen RJ, Muehlbauer GJ (2007) Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Rep 26:479–488PubMedCrossRefGoogle Scholar
  65. Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant Microbe Interact 19:123–129PubMedCrossRefGoogle Scholar
  66. Malathi V, Devegowda G (2001) In vitro evaluation of nonstarch polysaccharide digestibility of feed ingredients by enzymes. Poult Sci 80:302–305PubMedGoogle Scholar
  67. Manoharan M, Dahleen LS, Hohn TM, Neate SM, Yu X-H, Alexander NJ, McCormick SP, Bregitzer P, Schwarz PB, Horsley RD (2006) Expression of 3-OH trichothecene acetyltransferase in barley (Hordeum vulgare L.) and effects on deoxynivalenol. Plant Sci 171:699–706CrossRefGoogle Scholar
  68. Matthews PR, Wang MB, Waterhouse PM, Thornton S, Fieg SJ, Gubler F, Jacobsen JV (2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent 'twin T-DNAs' on a standard Agrobacterium transformation vector. Mol Breed 7:195–202CrossRefGoogle Scholar
  69. McGrath PF, Vincent JR, Lei C-H, Pawlowski WP, Torbert KA, Gu W, Kaeppler HF, Wan Y, Lemaux PG, Rines HR, DA Somers, Larkins BA, Lister RM (1997) Coat protein-mediated resistance to isolates of barley yellow dwarf in oats and barley. Eur J Plant Pathol 103:695–710CrossRefGoogle Scholar
  70. Nehra NS, Chibbar RN, Leung N, Caswell K, Millard C, Steinhauer L, Baga M, Kartha KK (1994) Self-fertile transgenic wheat plants regenerated from isolated scuteller tissues following microprojectile bombardment with two distinct gene constructs. Plant J 5:285–297CrossRefGoogle Scholar
  71. NRCS (2005) The PLANTS Database, ver 3.5. Accessed 28 Nov 2008
  72. Nuutila AM, Ritala A, Skadsen RW, Mannonen L, Kauppinen V (1999) Expression of fungal thermotolerant endo-1,4-beta-glucanase in transgenic barley seeds during germination. Plant Mol Biol 41:777–783PubMedCrossRefGoogle Scholar
  73. Okubara PA, Blechl AE, McCormick SP, Alexander NJ, Dill-Macky R, Hohn TM (2002) Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theor Appl Genet 106:74–83PubMedGoogle Scholar
  74. Oldach KH, Becker D, Lörz H (2001) Heterologous expression of genes mediating enhanced fungal resistance in transgenic wheat. Mol Plant Microbe Interact 14:832–838PubMedCrossRefGoogle Scholar
  75. Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500PubMedCrossRefGoogle Scholar
  76. Patel M, Johnson JS, Brettell RIS, Jacobsen J, Xue GP (2000) Transgenic barley expressing a fungal xylanase gene in the endosperm of the developing grains. Mol Breed 6:113–123CrossRefGoogle Scholar
  77. Popelka JC, Altpeter F (2003) Agrobacterium tumefaciens-mediated genetic transformation of rye (Secale cereale L.). Mol Breed 11:203–211CrossRefGoogle Scholar
  78. Popelka JC, Xu J, Altpeter F (2003) Generation of rye plants with low copy number after biolistic gene transfer and production of instantly marker-free transgenic rye. Transgenic Res 12:587–596PubMedCrossRefGoogle Scholar
  79. Primavesi LF, Wu H, Mudd EA, Day A, Jones HD (2008) Visualisation of plastids in endosperm, pollen and roots of transgenic wheat expressing modified GFP fused to transit peptides from wheat SSU RubisCO, rice FtsZ, and maize ferredoxin III proteins. Transgenic Res 17:529–543PubMedCrossRefGoogle Scholar
  80. Ramachandra Reddy A, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202PubMedCrossRefGoogle Scholar
  81. Rasco-Gaunt S, Riley A, Cannell M, Barcelo P, Lazzeri PA (2001) Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment. J Exp Bot 52:865–874PubMedGoogle Scholar
  82. Ritala A, Wahlstrom EH, Holkeri H, Hafren A, Makelainen K, Baez J, Makinen K, Nuutila AM (2008) Production of a recombinant industrial protein using barley cell cultures. Protein Expr Purif 59:274–281PubMedCrossRefGoogle Scholar
  83. Romeis J, Waldburger M, Streckeisen P, Hogervorst PAM, Keller B, Winzeler M, Bigler F (2007) Performance of transgenic spring wheat plants and effects on non-target organisms under glasshouse and semi-field conditions. J Appl Entomol 131:593–602CrossRefGoogle Scholar
  84. Sakamoto A, Murata N (2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51:81–88PubMedCrossRefGoogle Scholar
  85. Salvo-Garrido H, Travella S, Bilham LJ, Harwood WA, Snape JW (2004) The distribution of transgene insertion sites in barley determined by physical and genetic mapping. Genetics 167:131–1379CrossRefGoogle Scholar
  86. Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminium-activated malate transporter. Plant J 37:645–653PubMedCrossRefGoogle Scholar
  87. Schlaich T, Urbaniak BM, Malgras N, Ehler E, Birrer C, Meier L, Sautter C (2006) Increased field resistance to Tilletia caries provided by a specific antifungal virus gene in genetically engineered wheat. Plant Biotechnol J 4:63–75PubMedCrossRefGoogle Scholar
  88. Schuenmann PHD, Coia G, Waterhouse PM (2002) Biopharming the SimpliRED™ HIV diagnostic reagent in barley, potato and tobacco. Mol Breed 9:113–121CrossRefGoogle Scholar
  89. Sharp GL, Martin JM, Lanning SP, Blake NK, Brey CW, Sivamani E, Qu R, Talbert LE (2002) Field evaluation of transgenic and classical sources of wheat streak mosaic virus resistance. Crop Sci 42:105–110PubMedCrossRefGoogle Scholar
  90. Shewry PR, Powers S, Field JM, Fido RJ, Jones HD, Arnold GM, West J, Lazzeri PA, Barcelo P, Barro F, Tatham AS, Bekes F, Butow B, Darlington H (2006) Comparative field performance over 3 years and two sites of transgenic wheat lines expressing HMW subunit genes. Theor Appl Genet 113:128–136PubMedCrossRefGoogle Scholar
  91. Shin S, Mackintosh CA, Lewis J, Heinen SJ, Radmer L, Dill-Macky R, Baldridge GD, Zeyen RJ, Muehlbauer GJ (2008) Transgenic wheat expressing a barley class II chitinase gene has enhanced resistance against Fusarium graminearum. J Exp Bot 59:2371–2378PubMedCrossRefGoogle Scholar
  92. Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho T-HD, Qu R (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9PubMedCrossRefGoogle Scholar
  93. Skadsen RW, Sathish P, Federico ML, Abebe T, Fu J, Kaeppler HF (2002) Cloning of the promotor for a novel barley gene, Lem1, and its organ-specific promotion of Gfp expression in lemma and palea. Plant Mol Biol 49:545–555PubMedCrossRefGoogle Scholar
  94. Somleva MN, Blechl AE (2006) The barley Lem1 gene promoter drives expression specifically in outer floret organs at anthesis in transgenic wheat. Cereal Res Commun 4:665–671Google Scholar
  95. Stahl R, Horvath H, Van Fleet J, Voetz M, von Wettstein D, Wolf N (2002) T-DNA integration into the barley genome from single and double cassette vectors. Proc Natl Acad Sci USA 99:2146–2151PubMedCrossRefGoogle Scholar
  96. Stirpe F, Barbieri L, Battelli LG, Soria M, Lappi DA (1992) Ribosome-inactivating proteins from plants: present status and future prospects. Bio/Technology 10:405–412PubMedCrossRefGoogle Scholar
  97. Stoeger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J, Williams S, Keen D, Perrin Y, Christou P (2000) Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol 42:583–590CrossRefGoogle Scholar
  98. Stoeger E, Williams S, Christou P, Down RE, Gatehouse JA (1999) Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae. Mol Breed 5:65–73CrossRefGoogle Scholar
  99. Stoeger E, Williams S, Keen D, Christou P (1999) Constitutive versus seed specific expression in transgenic wheat: temporal and spatial control. Transgenic Res 8:73–82CrossRefGoogle Scholar
  100. Tilahun A, Skadsen R, Patel M, Kaeppler H (2006) The Lem2 gene promoter of barley directs cell- and development-specific expression of gfp in transgenic plants. Plant Biotechnol J 4:35–44CrossRefGoogle Scholar
  101. Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376CrossRefGoogle Scholar
  102. Tobias DJ, Manoharan M, Pritsch C, Dahleen LS (2007) Co-bombardment, integration and expression of rice chitinase and thaumatin-like protein genes in barley (Hordeum vulgare cv. Conlon) Plant Cell Rep 26:631–639PubMedCrossRefGoogle Scholar
  103. Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789PubMedCrossRefGoogle Scholar
  104. Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578PubMedCrossRefGoogle Scholar
  105. Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122PubMedCrossRefGoogle Scholar
  106. Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Biotechnology 10:667–674CrossRefGoogle Scholar
  107. Vickers CE, Xue G, Gresshoff PM (2006) A novel cis-acting element, ESP, contributes to high-level endosperm-specific expression in an oat globulin promoter. Plant Mol Biol 62:195–214PubMedCrossRefGoogle Scholar
  108. Wan Y, Lemaux PG (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol 104:37–48PubMedGoogle Scholar
  109. Wang MB, Abbott DC, Upadhyaya NM, Jacobsen JV, Waterhouse PM (2001) Agrobacterium tumefaciens-mediated transformation of an elite Australian barley cultivar with virus resistance and reporter genes. Aust J Plant Physiol 28:149–156Google Scholar
  110. Wieser H, Seilmeier W, Kieffer R, Altpeter F (2005) Flour protein composition and functional properties of transgenic rye lines expressing HMW subunit genes of wheat. Cereal Chem 82:594–600CrossRefGoogle Scholar
  111. Wu H, McCormac AC, Elliott MC, Chen DF (1998) Agrobacterium-mediated stable transformation of cell suspension cultures of barley (Hordeum vulgare L.). Plant Cell Tiss Org Cult 54:161–171CrossRefGoogle Scholar
  112. Wu H, Sparks C, Amoah B, Jones HD (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21:659–668PubMedGoogle Scholar
  113. Xue GP, Patel M, Johnson JS, Smyth DJ, Vickers CE (2003) Selectable marker-free transgenic barley producing a high level of cellulase (1,4-beta-glucanase) in developing grains. Plant Cell Rep 21:1088–1094PubMedCrossRefGoogle Scholar
  114. Xue ZY, Zhi D-Y, Xue G-P, Zhang H, Zhao Y-X, Xia G-M (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859CrossRefGoogle Scholar
  115. Zhang S, Cho M-J, Koprek T, Yun R, Bregitzer P, Lemaux PG (1999) Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings. Plant Cell Rep 18:959–966CrossRefGoogle Scholar
  116. Zimny J, Becker D, Brettschneider R, Loerz H (1995) Fertile, transgenic triticale (X triticosecale Wittmack). Mol Breed 1:155–164CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jochen Kumlehn
    • 1
    Email author
  • Grit Zimmermann
    • 1
  • Carolin Berger
    • 1
  • Cornelia Marthe
    • 1
  • Goetz Hensel
    • 1
  1. 1.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany

Personalised recommendations