Advertisement

Biopolymers

  • Maja HühnsEmail author
  • Inge Broer
Chapter
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 64)

Abstract

Biopolymers are intended to serve as substitutes for fuel-derived compounds. As their production in plants, driven by solar energy and photosynthesis, is CO2 neutral and they are normally completely biodegradable, they support a sustainable use of renewable resources. Unfortunately, in agriculturally usable cultivars, most biopolymers with technical applications are produced in low amounts, unfavourable combinations or are even absent. Hence, gene technology has to be used to create plants with an optimal concentration of, e.g. polysaccharides, poly-amino acids, or even polyhydroxyalkanoates. In order to reduce costs and the amount of farmland taken away from food production, the biopolymers should be a byproduct in plants already used for biomass, carbohydrate or fatty acid production. Several biopolymers are already produced in plants, sometimes in interesting amounts; nevertheless application is not in sight, due to necessary optimization and, even more, regulatory frameworks.

Keywords

Total Soluble Protein European Food Safety Authority Silk Fibre Spider Silk Fibrous Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allen MM (1984) Cyanobacterial cell inclusions. Annu Rev Microbiol 38:1–25PubMedCrossRefGoogle Scholar
  2. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416PubMedCrossRefGoogle Scholar
  3. Amber IJ, Hibbs JB, Taintor RR, Vavrin Z (1988) The L-arginine dependent effector mechanism is induced in murine adenocarcinoma cells by culture supernatant from cytotoxic activated macrophages. J Leuk Biol 43:187–192Google Scholar
  4. Arai Y, Nakashita H, Suzuki Y, Kobayashi K, Shimizu T, Yasuda M, Doi Y, Yamaguchi I (2001) Plastid targeting of polyhydroxybutyrate biosynthetic pathway in tobacco. Plant Biotechnol 18:289–293CrossRefGoogle Scholar
  5. Barr LA, Fahnestock SR, Yang JJ (2004) Production and purification of recombinant DP1B silk-like protein in plants. Mol Breed 13:345–356CrossRefGoogle Scholar
  6. Bianchi G, Gamba A, Limiroli R, Pozzi N, Elster R, Salamini F, Bartels D (1993) The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Physiol Plant 87:223–226CrossRefGoogle Scholar
  7. Bohmert K, Balbo I, Steinbüchel A, Tischendorf G, Willmitzer L (2002) Constitutive expression of the beta-ketothiolase gene in transgenic plants. A major obstacle for obtaining polyhydroxybutyrate-producing plants. Plant Physiol 128:1282–1290PubMedCrossRefGoogle Scholar
  8. Caso G, McNurlan MA, McMillan ND, Eremin O, Garlick PJ (2004) Tumour cell growth in culture: dependence on arginine. Clin Sci 107:371–379PubMedCrossRefGoogle Scholar
  9. Cen Y, Luo X, Liu X (1999) Effect of arginine on deep partial thickness burn in rats. Hua Xi Yi Ke Da Xue Xue Bao 30:198–201PubMedGoogle Scholar
  10. Chang CJ, Swift G (1999) Poly(aspartic acid) hydrogel. J Macromol Sci Pure Appl Chem A36:963–970Google Scholar
  11. Da Costa MS, Santos H, Galinski EA (1998) An overview of the role and diversity of compatible solutes in bacteria and archae. Adv Biochem Eng Biotechnol 61:117–153PubMedGoogle Scholar
  12. Davis JP, Supatcharee N, Khandelwal RL, Chibbar RN (2003) Synthesis of novel starches in planta: opportunities and challenges. Starch Starke 55:107–120CrossRefGoogle Scholar
  13. de Jonge WJ, Kwikkers KL, te Velde AA, van Deventer SJH, Nolte MA, Mebius RE, Ruijter JM, Lamers MC, Lamers WH (2002) Arginine deficiency affects early B cell maturation and lymphoid organ development in transgenic mice. J Clin Invest 110:1539–1548PubMedGoogle Scholar
  14. EFSA (2005) Opinion of the scientific panel on genetically modified organisms on an application (reference EFSA-GMO-UK-2005-14) for the placing on the market of genetically modified potato EH92-527-1 with altered starch composition, for production of starch and food/feed uses, under regulation (EC) No 1829/2003 from BASF Plant Science. EFSA J 324:1–20Google Scholar
  15. Flynn NE, Meininger CJ, Haynes TE, Wu G (2002) Dossier: free amino acids in human health and pathologies -- the metabolic basis of arginine nutrition and pharmacotherapy. Biomed Pharmacother 56:427–438PubMedCrossRefGoogle Scholar
  16. Franke R, McMichael CM, Meyer K, Shirley AM, Cusumano JC, Chapple C (2000) Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase. Plant J 22:223–234PubMedCrossRefGoogle Scholar
  17. Gödl C, Sawangwan T, Nidetzky B, Müller M (2008) Method for producing 2-O-glycerol-alpha-D-glucopyranoside. Patent WO/2008/034158Google Scholar
  18. Hinman MB, Jones JA, Lewis RV (2000) Synthetic spider silk: a modular fiber. Trends Biotechnol 18:374–379PubMedCrossRefGoogle Scholar
  19. Holland C, Terry AE, Porter D, Vollrath F (2007) Natural and unnatural silks. Polymer 48:3388–3392CrossRefGoogle Scholar
  20. Houmiel KL, Slater S, Broyles D, Casagrande L, Colburn S, Gonzalez K, Mitsky TA, Reiser SE, Shah D, Taylor NB, Tran M, Valentin HE, Gruys KJ (1999) Poly(beta-hydroxybutyrate) production in oilseed leukoplasts of Brassica napus. Planta 209:547–550PubMedCrossRefGoogle Scholar
  21. Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812PubMedCrossRefGoogle Scholar
  22. Huang J, Foo CWP, Kaplan DL (2007) Biosynthesis and applications of silk-like and collagen-like proteins. Polymer Rev 47:29–62CrossRefGoogle Scholar
  23. Hühns M, Neumann K, Hausmann T, Ziegler K, Klemke F, Kahmann U, Staiger D, Lockau W, Pistorius EK, Broer I (2008) Plastid targeting strategies for cyanophycin synthetase to achieve high-level polymer accumulation in Nicotiana tabacum. Plant Biotechnol J 6:321–336PubMedCrossRefGoogle Scholar
  24. Huntley SK, Ellis D, Gilbert M, Chapple C, Mansfield SD (2003) Significant increases in pulping efficiency in C4H-F5H-transformed poplars: Improved chemical savings and reduced environmental toxins. J Agric Food Chem 51:6178–6183PubMedCrossRefGoogle Scholar
  25. Joentgen W, Groth TSA, Hai T, Oppermann FB (2001) Polyasparaginic acid homopolymers and copolymers, biotechnical production and use thereof. US Patent 61807572Google Scholar
  26. John ME, Keller G (1996) Metabolic pathway engineering in cotton: biosynthesis of polyhydroxybutyrate in fiber cells. Proc Natl Acad Sci USA 93:12768–12773PubMedCrossRefGoogle Scholar
  27. Kaneda M, Kobayashi K, Nishida K, Katsuta S (1984) Glycerol glucosides in the Lilium genus. 3. Liliosides-D and liliosides-E 2 glycerol glucosides from Lilium japonicum. Phytochemistry 23:795–798CrossRefGoogle Scholar
  28. Klähn S, Marquardt DM, Rollwitz I, Hagemann M (2008) Expression of the ggpPS gene for glucosylglycerol biosynthesis from Azotobacter vinelandii resulted in improved salt tolerance of Arabidopsis thaliana. J Exp Bot 60:1679–1689CrossRefGoogle Scholar
  29. Kiick KL (2007) Biosynthetic methods for the production of advanced protein-based materials. Polym Rev 47:1–7CrossRefGoogle Scholar
  30. Krehenbrink M, Oppermann-Sanio FB, Steinbuchel A (2002) Evaluation of non-cyanobacterial genome sequences for occurrence of genes encoding proteins homologous to cyanophycin synthetase and cloning of an active cyanophycin synthetase from Acinetobacter sp strain DSM 587. Arch Microbiol 177:371–380PubMedCrossRefGoogle Scholar
  31. Kull B, Salamini F, Rhode W (1995) genetic engineering of potato starch composition. Inhibition of amylose biosynthesis in tubers from transgenic potato lines by the expression of antisense sequences of the gene for granule-bound-starch synthase. J Genet Breed 49:69–76Google Scholar
  32. Lazaris A, Arcidiacono S, Huang Y, Zhou JF, Duguay F, Chretien N, Welsh EA, Soares JW, Karatzas CN (2002) Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295:472–476PubMedCrossRefGoogle Scholar
  33. Lenis NP, van Diepen HTM, Bikker P, Jongbloed AG, van der Meulen J (1999) Effect of the ratio between essential and nonessential amino acids in the diet on utilization of nitrogen and amino acids by growing pigs. J Anim Sci 77:1777–1787PubMedGoogle Scholar
  34. Li G, Quiros CF (2003) In planta side-chain glucosinolate modification in Arabidopsis by introduction of dioxygenase Brassica homolog BoGSL-ALK. Theor Appl Genet 106:1116–1121PubMedGoogle Scholar
  35. Li P, Yin YL, Li D, Kim SW, Wu GY (2007) Amino acids and immune function. Br J Nutr 98:237–252PubMedCrossRefGoogle Scholar
  36. Lössl A, Eibl C, Harloff HJ, Jung C, Koop HU (2003) Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Rep 21:891–899PubMedGoogle Scholar
  37. Menassa R, Hong Z, Karatzas CN, Lazaris A, Richman A, Brandle J (2004) Spider dragline silk proteins in transgenic tobacco leaves: accumulation and field production. Plant Biotechnol J 2:431–438PubMedCrossRefGoogle Scholar
  38. Nagapudi K, Brinkman WT, Leisen J, Thomas BS, Wright ER, Haller C, Wu XY, Apkarian RP, Conticello VP, Chaikof EL (2005) Protein-based thermoplastic elastomers. Macromolecules 38:345–354CrossRefGoogle Scholar
  39. Nakashita H, Arai Y, Yoshioka K, Fukui T, Doi Y, Usami R, Horikoshi K, Yamaguchi I (1999) Production of biodegradable polyester by a transgenic tobacco. Biosci Biotechnol Biochem 63:870–874CrossRefGoogle Scholar
  40. Nawrath C, Poirier Y, Somerville C (1994) Targeting of the polyhydroxybutyrate biosynthetic-pathway to the plastids of Arabidopsis thaliana results in high-levels of polymer accumulation. Proc Natl Acad Sci USA 91:12760–12764PubMedCrossRefGoogle Scholar
  41. Neumann K, Stephan DP, Ziegler K, Hühns M, Broer I, Lockau W, Pistorius EK (2005) Production of cyanophycin, a suitable source for the biodegradable polymer polyaspartate, in transgenic plants. Plant Biotechnol J 3:249–258PubMedCrossRefGoogle Scholar
  42. Nieves C Jr, Langkamp-Henken B (2002) Arginine and immunity: a unique perspective. Biomed Pharmacother 56:471–482PubMedCrossRefGoogle Scholar
  43. Noda I, Green PR, Satkowski MM, Schechtman LA (2005) Preparation and properties of a novel class of polyhydroxyalkanoate copolymers. Biomacromolecules 6:580–586PubMedCrossRefGoogle Scholar
  44. Oppermann-Sanio FB, Steinbüchel A (2002) Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften 89:11–22PubMedCrossRefGoogle Scholar
  45. Oppermann-Sanio FB, Hai T, Aboulmagd E, Hezayen FF, Jossek S, Steinbüchel A (1999) Biochemistry of polyamide metabolism. In: Steinbüchel, A (ed) Biochemical principles and mechanisms of biosynthesis and biodegradation of polymers. Proceedings of the international symposium. Wiley-VCH, Weinheim, pp 185–193Google Scholar
  46. Perez-Rigueiro J, Elices M, Guinea GV (2003) Controlled supercontraction tailors the tensile behaviour of spider silk. Polymer 44:3733–3736CrossRefGoogle Scholar
  47. Pickardt T, de Kathen A (2004) Gentechnisch veränderte Pflanzen mit neuen oder verbesserten Qualitäts-und Nutzungseigenschaften: Futtermittel- und rohstoffliefernde Nutzpflanzen, Pflanzen zur Bodensanierung und Zierpflanzen. Auftrag des Büros für Technikfolgenabschätzung De Kathen &Pickardt BiotechConsult GbR, BerlinGoogle Scholar
  48. Poirier Y (2002) Polyhydroxyalknoate synthesis in plants as a tool for biotechnology and basic studies of lipid metabolism. Prog Lipid Res 41:131–155PubMedCrossRefGoogle Scholar
  49. Popovic PJ, Zeh HJ, Ochoa JB (2007) Arginine and immunity. J Nutr 137:1681S–1686SPubMedGoogle Scholar
  50. Poirier Y, Dennis DE, Klomparens K, Somerville C (1992) Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science 256:520–523PubMedCrossRefGoogle Scholar
  51. Qaim M (2006) The role of plant breeding for global food security. Ber Landwirtsch 84:198–212Google Scholar
  52. Rising A, Nimmervoll H, Grip S, Fernandez-Arias A, Storckenfeldt E, Knight DP, Vollrath F, Engstrom W (2005) Spider silk proteins -- mechanical property and gene sequence. Zool Sci 22:273–281PubMedCrossRefGoogle Scholar
  53. Roder A, Hoffmann E, Hagemann M, Berg G (2005) Synthesis of the compatible solutes glucosylglycerol and trehalose by salt-stressed cells of Stenotrophomonas strains. FEMS Microbiol Lett 243:219–226PubMedCrossRefGoogle Scholar
  54. Romano A, van der Plas LHW, Witholt B, Eggink G, Mooibroek H (2005) Expression of poly-3-(R)-hydroxyalkanoate (PHA) polymerase and acyl-CoA-transacylase in plastids of transgenic potato leads to the synthesis of a hydrophobic polymer, presumably medium-chain-length PHAs. Planta 220:455–464PubMedCrossRefGoogle Scholar
  55. Roth FX, Fickler J, Kirchgessner M (1995) Effect of dietary arginine and glutamic acid supply on the N-balance of piglets. 5. Communication on the importance of nonessential amino acids for protein retention. Z Tierphysiol Tierernahr Futtermittelk 73:202–212Google Scholar
  56. Sanford K, Kumar M (2005) New proteins in a materials world. Curr Opin Biotechnol 16:416–421PubMedCrossRefGoogle Scholar
  57. Saruul P, Srienc F, Somers DA, Samac DA (2002) Production of a biodegradable plastic polymer, poly-beta-hydroxybutyrate, in transgenic alfalfa. Crop Sci 42:919–927CrossRefGoogle Scholar
  58. Sauter A, Hüsung B (2005) TA-Projekt Grüne Gentechnik -- transgene Pflanzen der 2. und 3. Generation. Büro für Technikfolgenabschätzung beim deutschen Bundestag, Berlin Arbeitsbericht 104Google Scholar
  59. Scheibel T (2005) Protein fibers as performance proteins: new technologies and applications. Curr Opin Biotechnol 16:427–433PubMedCrossRefGoogle Scholar
  60. Scheller J, Conrad U (2005) Plant-based material, protein and biodegradable plastic. Curr Opin Plant Biol 8:188–196PubMedCrossRefGoogle Scholar
  61. Scheller J, Guhrs KH, Grosse F, Conrad U (2001) Production of spider silk proteins in tobacco and potato. Nat Biotechnol 19:573–577PubMedCrossRefGoogle Scholar
  62. Scheller J, Henggeler D, Viviani A, Conrad U (2004) Purification of spider silk-elastin from transgenic plants and application for human chondrocyte proliferation. Transgenic Res 13:51–57PubMedCrossRefGoogle Scholar
  63. Schwamborn M (1996) Polyasparaginsäuren. Nachr Chem Technol Lab 44:1167–1179CrossRefGoogle Scholar
  64. Schwamborn M (1998) Chemical synthesis of polyaspartates: a biodegradable alternative to currently used polycarboxylate homo- and copolymers. Polymer Degrad Stab 59:39–45CrossRefGoogle Scholar
  65. Shao ZZ, Vollrath F (2002) Materials: surprising strength of silkworm silk. Nature 418:741PubMedCrossRefGoogle Scholar
  66. Simon RD (1976) Biosynthesis of multi-L-arginyl-poly(L-aspartic acid) in filamentous cyanobacterium Anabaena cylindrica. Biochim Biophys Acta 422:407–418PubMedCrossRefGoogle Scholar
  67. Simon RD (1987) Inclusion bodies in the cyanobacteria: cyanophycin, polyphosphate, polyhedral bodies. In: Fay P, van Baalen C (eds) The cyanobacteria, Elsevier, Amsterdam, pp 199–225Google Scholar
  68. Simon RD, Weathers P (1976) Determination of structure of novel polypeptide containing aspartic acid and arginine which is found in Cyanobacteria. Biochim Biophys Acta 420:165–176PubMedCrossRefGoogle Scholar
  69. Slater S, Mitsky TA, Houmiel KL, Hao M, Reiser SE, Taylor NB, Tran M, Valentin HE, Rodriguez DJ, Stone DA, Padgette SR, Kishore G, Gruys KJ (1999) Metabolic engineering of Arabidopsis and Brassica for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production. Nat Biotechnol 17:1011–1016PubMedCrossRefGoogle Scholar
  70. Tabata K, Abe H, Doi Y (2000) Microbial degradation of poly(aspartic acid) by two isolated strains of Pedobacter sp. and Sphingomonas sp. Biomacromolecules 1:157–161PubMedCrossRefGoogle Scholar
  71. Taheri F, Ochoa JB, Faghiri Z, Culotta K, Park HJ, Lan MS, Zea AH, Ochoa AC (2001) L-arginine regulates the expression of the T-cell receptor zeta chain (CD3 zeta) in Jurkat cells. Clin Cancer Res 7:958S–965SPubMedGoogle Scholar
  72. Tapiero H, Mathe G, Couvreur P, Tew KD (2002) I. Arginine. Biomed Pharmacother 56:439–445Google Scholar
  73. Thrän D, Weber M, Scheuermann A, Fröhlich N, Zeddies J, Henze A, Thoroe C, Schweinle J, Fritsche UR, Jenseit W, Rausch L, Schmidt K (2005) Sustainable strategies for biomass use in the european context. Analysis in the charged debate on national guidelines and the competition between sloid, liquid and gaseous biofuels. Institute for Energy and Environment GmbH, LeipzigGoogle Scholar
  74. Tirrell DA (1996) Putting a new spin on spider silk. Science 271:39–40PubMedCrossRefGoogle Scholar
  75. Valentin HE, Broyles DL, Casagrande LA, Colburn SM, Creely WL, DeLaquil PA, Felton HM, Gonzalez KA, Houmiel KL, Lutke K, Mahadeo DA, Mitsky TA, Padgette SR, Reiser SE, Slater S, Stark DM, Stock RT, Stone DA, Taylor NB, Thorne GM, Tran M, Gruys KJ (1999) PHA production, from bacteria to plants. Int J Biol Macromol 25:303–306PubMedCrossRefGoogle Scholar
  76. van Beilen JB, Poirier Y (2008) Production of renewable polymers from crop plants. Plant J 54:684–701PubMedCrossRefGoogle Scholar
  77. Vollrath F (2000) Strength and structure of spiders' silks. J Biotechnol 74:67–83PubMedGoogle Scholar
  78. Vollrath F, Knight DP (2001) Liquid crystalline spinning of spider silk. Nature 410:541–548PubMedCrossRefGoogle Scholar
  79. Wu GY, Bazer FW, Davis TA, Jaeger LA, Johnson GA, Kim SW, Knabe DA, Meininger CJ, Spencer TE, Yin YL (2007) Important roles for the arginine family of amino acids in swine nutrition and production. Livestock Sci 112:8–22CrossRefGoogle Scholar
  80. Yang JJ, Barr LA, Fahnestock SR, Liu ZB (2005) High yield recombinant silk-like protein production in transgenic plants through protein targeting. Transgenic Res 14:313–324PubMedCrossRefGoogle Scholar
  81. Yeramian A, Martin L, Arpa L, Bertran J, Soler C, McLeod C, Modolell M, Palacin M, Lloberas J, Celada A (2006) Macrophages require distinct arginine catabolism and transport systems for proliferation and for activation. Eur J Immunol 36:1516–1526PubMedCrossRefGoogle Scholar
  82. Ziegler K, Deutzmann R, Lockau W (2002) Cyanophycin synthetase-like enzymes of non-cyanobacterial eubacteria: characterization of the polymer produced by a recombinant synthetase of Desulfitobacterium hafniense. Z Naturforsch C 57:522–529PubMedGoogle Scholar
  83. Zotz RJ, Schenk S, Kuhn A, Schlunken S, Krone V, Bruns W, Genth S, Schuler G (2001) Safety and efficacy of LK565 -- a new polymer ultrasound contrast agent. Z Kardiol 90:419–426PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.AgrobiotechnologyUniversity of RostockRostockGermany

Personalised recommendations