Advertisement

Insect and Nematode Resistance

  • Tim ThurauEmail author
  • Wanzhi Ye
  • Daguang Cai
Chapter
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 64)

Abstract

Crops are attacked by parasitic pests, including insects and nematodes causing considerable economic losses worldwide. The global yield loss of crops due to herbivorous insects varies between 5% and 30% depending on crop species, while the economic losses due to plant parasitic nematodes are about US $125 billion annually. Today, the control of plant parasites mainly depends on relatively few chemicals that pose serious concerns of risks and hazards for humans, animals and the environment and also increase the costs of growing crops. Use of natural resistance mechanisms offers a promising alternative for parasite control. A set of resistance genes has been identified. Advanced understandings of natural resistance mechanisms in molecular details broaden the horizon of crop resistance breeding programs. Because the resistance resource is limited in many crop species and gene-for-gene reliant resistance is easily overcome by new virulent pathotypes, new genetic variability is needed. Therefore, engineered resistance is becoming an essential part of a sustainable parasite control as it offers a parasite management with benefits to the producer, the consumer and the environment. For engineering resistance , several approaches are under discussion and application. This review focuses on the strategy for engineering parasite resistance in crops by genetic modification.

Keywords

Transgenic Plant Coffee Berry Cyst Nematode Insect Resistance Nematode Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Atkinson HJ, Urwin PE, McPherson MJ (2003) Engineering plants for nematode resistance. Annu Rev Phytopathol 41:615–639PubMedCrossRefGoogle Scholar
  2. Aylife MA, Lagudah ES (2004) Molecular genetics of disease resistance in cereals. Ann Bot 94:765–773CrossRefGoogle Scholar
  3. Bakker E, Achenbach U, Bakker J, van Vliet J, Peleman J, Segers B, van der Heijden S, van der Linde P, Graveland R, Hutten R (2004) A high-resolution map of the H1 locus harbouring resistance to the potato cyst nematode Globodera rostochiensis. Theor Appl Genet 109:146–152PubMedCrossRefGoogle Scholar
  4. Bates SL, Zhao JZ, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nat Biotechnol 23:57–62PubMedCrossRefGoogle Scholar
  5. Baum J, Bogaert T, Clinton W, Heck G, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326PubMedCrossRefGoogle Scholar
  6. Bendahmane A, Kanyuka K, Baulcombe DC (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11:781–792PubMedGoogle Scholar
  7. Bendahmane A, Farnham G, Moffett P, Baulcombe DC (2002) Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato. Plant J 32:195–204PubMedCrossRefGoogle Scholar
  8. Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436PubMedCrossRefGoogle Scholar
  9. Böckenhoff A, Grundler FMW (1994) Studies on the nutrient uptake by the beet cyst nematode Heterodera schachtii by in situ microinjection of fluorescent probes into the feeding structures in Arabidopsis thaliana. Parasitology 109:249–254CrossRefGoogle Scholar
  10. Boulter D (1993) Insect pest control by copying nature using genetically engineered crops. Phytochemistry 34:1453–1466PubMedCrossRefGoogle Scholar
  11. Boulter D, Edwards GA, Gatehouse AMR, Gatehouse JA, Hilder VA (1990) Additive protective effects of different plant-derived insect resistance genes in transgenic tobacco plants. Crop Protect 9:351–354CrossRefGoogle Scholar
  12. Brioschi D, Nadalini L, Bengston M, Sogayar M, Moura D, Silva-Filho M (2007) General up-regulation of Spodoptera frugiperda trypsins and chymotrypsins allows its adaptation to soybean proteinase inhibitor. Insect Biochem Mol Biol 37:1283–1290PubMedCrossRefGoogle Scholar
  13. Broadway RM (1997) Dietary regulation of serine proteinases that are resistant to serine proteinase inhibitors. J Invertebr Pathol 43:855–874Google Scholar
  14. Bruderer S, Leitner K (2003) Genetically Modified Crops: molecular and regulatory details. Agency BATS, Switzerland. July 2003. Portable Document Format. Available from Internet: http://www.bats.ch/gmo-watch/GVO-report140703.pdf
  15. Burrows PR, De Waele D (1997) Engineering resistance against plant parasitic nematodes using anti-nematode genes. In: Fenoll C, Grundler FMW, Ohl SA (eds) Cellular and molecular aspects of plant--nematode interactions. Kluwer, Dordrecht, pp 217–236CrossRefGoogle Scholar
  16. Cai D, Kleine M, Kifle S, Harloff HJ, Sandal NN, Marcker KA, Klein-Lankhorst RM, Salentijn EMJ, Lange W, Stiekema WJ, Wyss U, Grundler FMW, Jung C (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275:832–834PubMedCrossRefGoogle Scholar
  17. Cai D, Thurau T, Tian YY, Lange T, Yeh KW, Jung C (2003) Sporamin-mediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is depending on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots. Plant Mol Biol 51:839–849PubMedCrossRefGoogle Scholar
  18. Cai D, Thurau T, Weng LH, Wegelin T, Tian Y, Grundler FMW, Jung C (2005) An enhanced expression of Hs1 pro- 1 in feeding sites is required for initiation of resistance to the beet cyst nematode (Heterodera schachtii Schmidt). Biol Mol Plant Microbe Interact 4:293–296Google Scholar
  19. Carbonero P, Royo J, Diaz I, Garciamaroto F, Gonzalez-Hidalgo E, Gutierrez C, Casanera P (1993) Cereal inhibitors of insect hydrolases (a-amylases and trypsin): genetic control, transgenic expression and insect pests. In: Bruening GJ, Garciolmedo F, Ponz FJ (eds) Workshop on engineering plants against pests and pathogens. Instituto Juan March de Estudios Investigaciones, Madrid, p. 71Google Scholar
  20. Carlini CR, Grossi-de-Sá MF (2002) Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon 40:1515–1539PubMedCrossRefGoogle Scholar
  21. Cattaneo M, Yafuso C, Schmidt C, Huang C, Rahman M, Olson C, Ellers-Kirk C, Orr B, Marsh S, Antilla L, Dutilleul P, Carrière P (2006) Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield. Proc Natl Acad Sci USA 103:7571–7576PubMedCrossRefGoogle Scholar
  22. Chattopadhyay A, Bhatnagar NB, Bhatnagar R (2005) Bacterial insecticidal toxins. Crit Rev Microbiol 30:33–54CrossRefGoogle Scholar
  23. Chen RG, Zhang LY, Zhang, JH, Zhang W, Wang X, Ouyang B, Li HX, Ye ZB (2006) Functional characterization of Mi, a root-knot nematode resistance gene from tomato (Lycopersicon esculentum L.). J Integr Plant Biol 48:1458–1465CrossRefGoogle Scholar
  24. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host--microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814PubMedCrossRefGoogle Scholar
  25. Chitwood DJ (2003) Research on plant–parasitic nematode biology. Pest Manage Sci 59:748–753CrossRefGoogle Scholar
  26. Christou P, Capell T, Kohli A, Gatehouse JA, Gatehouse AMR(2006) Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci 11:302–308PubMedCrossRefGoogle Scholar
  27. Clark B, Phillips T, Coats J (2005) Environmental fate and effects of Bacillus thuringiensis (Bt) proteins from transgenic crops. J Agric Food Chem 53:4643–4653PubMedCrossRefGoogle Scholar
  28. Crickmore N, Zeigler DR, Schnepf E, Van Rie J, Lereclus D, Baum J, Bravo A, Dean DH (2009) Bacillus thuringiensis toxin nomenclature. http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/. Accessed 30 Jan 2009
  29. Dangl JL, Jones JDG (2001) Plant pathogens and integrated defense responses to infection. Nature 411:826–833PubMedCrossRefGoogle Scholar
  30. Davis EL, Hussey RS, Baum TJ (2004) Getting to the roots of parasitism by nematodes. Trends Parasitol 20:134–141PubMedCrossRefGoogle Scholar
  31. Davis EL, Hussey RS, Mitchum MG, Baum TJ (2008) Parasitism proteins in nematode--plant interactions. Curr Opin Plant Biol 11:360–366PubMedCrossRefGoogle Scholar
  32. De Majnik J, Ogbonnaya FC, Moullet O, Lagudah ES (2003) The Cre1 and Cre3 nematode resistance genes are located at homoelogous loci in the wheat genome. Mol Plant Microbe Interact 16:1129–1134PubMedCrossRefGoogle Scholar
  33. De Moraes CM, Lewis WJ, Paré PW, Tumlinson JH (1998). Herbivore infested plants selectively attract parasitoids. Nature 393:570–574CrossRefGoogle Scholar
  34. Dempsey DMA, Silva H, Klessig DF (1998) Engineering disease and pest resistance in plants. Trends Microbiol 6:54–61PubMedCrossRefGoogle Scholar
  35. Ding L, Hu C, Yeh K, Wang P (1998) Development of insect-resistant transgenic cauliflower plants expressing the trypsin inhibitor gene isolated from local sweet potato. Plant Cell Rep 17:854–860CrossRefGoogle Scholar
  36. Djian-Caporalino C, Fazari A, Arguel MJ, Vernie T, VandeCasteele C, Faure I, Brunoud G, Pijarowski L, Palloix A, Lefebvre V, Abad P (2007) Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. Theor Appl Genet 114:473–486PubMedCrossRefGoogle Scholar
  37. Doyle EA, Lambert KN (2002) Cloning and characterization of an esophageal-gland specific pectate lyase from the root-knot nematode Meloidogyne javanica. Mol Plant Microbe Interact 15:549–556PubMedCrossRefGoogle Scholar
  38. Down RE, Gatehouse AMR, Hamilton WDO, Gatehouse, JA (1996) Snowdrop lectin inhibits development and decreases fecundity of the glasshouse potato aphid (Aulacorthum solani) when administered in vitro and via transgenic plants both in laboratory and glasshouse trials. J Insect Physiol 42:1035–1045CrossRefGoogle Scholar
  39. Duan X, Li X, Xue Q, Abo-El-Saad M, Xu D, Wu R (1996) Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nat Biotechnol 14:494–498PubMedCrossRefGoogle Scholar
  40. Ernst K, Kumar A, Kriseleit D, Kloos D-U, Phillips MS, Ganal MW (2002) The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. Plant J 31:127–136PubMedCrossRefGoogle Scholar
  41. Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci USA 93:5389–5394PubMedCrossRefGoogle Scholar
  42. Ewen S, Pustai A (1999) Effects of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small intestine. Lancet 354:1353–1354PubMedCrossRefGoogle Scholar
  43. Farinos GP, de la Poza M, Hernandez-Crespo P, Ortego F, Castanera P (2004) Resistance monitoring of field populations of the corn borers Sesamia nonagrioides and Ostrinia nubilalis after 5 years of Bt maize cultivation in Spain. Entomol Exp Appl 110:23–30CrossRefGoogle Scholar
  44. Fritz-Laylin LK, Krishnamurthy N, Tör M, Sjölander KV, Jones JDG (2005) Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis. Plant Physiol138:611–623PubMedCrossRefGoogle Scholar
  45. Frutos R, Rang C, Royer M (1999) Managing resistance to plants producing Bacillus turingiensis toxins. Crit Rev Biotechnol 19:227–276CrossRefGoogle Scholar
  46. Fuller VL, Lilley CJ, Urwin PE (2008) Nematode resistance. New Phytol 180:27–44PubMedCrossRefGoogle Scholar
  47. Gao B, Allen R, Maier T, Davis EL, Baum TJ, Hussey RS (2001) Identification of putative parasitism genes expressed in the esophageal gland cells of the soybean cyst nematode Heterodera glycines. Mol Plant Microbe Interact 14:1247–1254PubMedCrossRefGoogle Scholar
  48. Gatehouse A, Gatehouse J, Dobie P, Kilminster A, Boulter D (1979) Biochemical basis of insect resistance in Vigna unguiculata. J Sci Food Agric 30:948–958CrossRefGoogle Scholar
  49. Gatehouse AMR, Davison GM, Newell CA, Merryweather C, Hamilton WDO, Burgess EPJ, Gatehouse JA (1997) Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: growth room trails. Mol Breed 3:49–63CrossRefGoogle Scholar
  50. Gema P, Farinos G, de la Poza M, Hernandez-Crespo P, Ortego F, Castanera P (2004) Resistance monitoring of field populations of the corn borers Sesamia nonagrioides and Ostrinia nubilalis after 5 years of Bt maize cultivation in Spain. Entomol Exp Appl 110:23–30CrossRefGoogle Scholar
  51. Gheysen G, Vanholme B (2007) RNAi from plants to nematodes. Trends Biotechnol 25:89–92PubMedCrossRefGoogle Scholar
  52. Gilbert JC, McGuire DC (1956) Inheritance of resistance to severe root-knot from Meloidogyne incognita in commercial type tomatoes. Proc Am Soc Hortic Sci 63:437–442Google Scholar
  53. Giri A, Harsulkar A, Deshpande V, Sainani M, Gupta V, Ranjekar P (1998) Chickpea defensive proteinase inhibitors can be inactivated by podborer gut proteinases. Plant Physiol 116:393–401CrossRefGoogle Scholar
  54. Goggin FL, Jia LL, Shah G, Hebert S, Williamson VM, Ullman DE( 2006) Heterologous expression of the Mi-1.2 gene from tomato confers resistance against nematodes but not aphids in eggplant. Mol Plant Microbe Interact 19:383–388PubMedCrossRefGoogle Scholar
  55. Gordon KHJ, Waterhouse PM (2007) RNAi for insect-proof plants. Nat Biotechnol 25:1231–1232PubMedCrossRefGoogle Scholar
  56. Griffitts J, Haslam S, Yang T, Garczynski S, Mulloy B, Morris H, Cremer P, Dell A, Adang M, Aroian R (2005) Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307:922–925PubMedCrossRefGoogle Scholar
  57. Grube RC, Radwanski ER, Jahn M (2000) Comparative genetics of disease resistance within the Solanaceae. Genetics 155:873–887PubMedGoogle Scholar
  58. Habibi J, Backus EA, Czapla TH (1993) Plant lectins affect survival of the potato leafhopper. J Econ Entomol 86:945–951Google Scholar
  59. Hilder VA, Gatehouse AMR, Sheerman SE, Barker RF, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330:160–163CrossRefGoogle Scholar
  60. Huang G, Allen R, Davis EL, Baum TJ, Hussey RS (2006a) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci USA 103:14302–14306PubMedCrossRefGoogle Scholar
  61. Huang G, Dong R, Allen R, Davis EL, Baum TJ, Hussey RS (2006b) A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor. Mol Plant Microbe Interact 19:463–470PubMedCrossRefGoogle Scholar
  62. Hussain SS, Makhdoom R, Husnaın T, Saleem T, Riazuddin S (2008) Toxicity of snowdrop lectin protein towards cotton aphids Aphis gossypii (Homoptera, Aphididae) J Cell Mol Biol 7:29–40Google Scholar
  63. James C (2008) Global status of commercialized biotech/GM crops: 2008. (ISAAA brief no. 39) ISAAA, Ithaca, N.Y.Google Scholar
  64. Johnson R, Narvaez J, An G, Ryan C (1989) Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Proc Natl Acad Sci USA 86:9871–9875PubMedCrossRefGoogle Scholar
  65. Jones DA, Takemoto D (2004) Plant innate immunity -- direct and indirect recognition of general and specific pathogen-associated molecules. Curr Opin Immunol 16:48–62PubMedCrossRefGoogle Scholar
  66. Jones JDG, Dangl JL (2006). The plant immune system. Nature 444:323–329PubMedCrossRefGoogle Scholar
  67. Kashlan N, Richardson M (1981). The complete amino acid sequence of a major wheat protein inhibitor of α-amylase. Phytochemistry 20:1781–1784CrossRefGoogle Scholar
  68. Kessler A, Baldwin IT (2001): Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144PubMedCrossRefGoogle Scholar
  69. Knight P, Crickmore N, Ellar D (1994) The receptor for Bacillus thuringiensis Cry1A(c) deltaendotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol Microbiol 11:429–436PubMedCrossRefGoogle Scholar
  70. Knight P, Knowles B, Ellar D (1995) Molecular cloning of an Insect amino peptidase N that serves as a receptor for Bacillus thuringiensis CryIA(c) toxin. J Biol Chem 270:17765–17770PubMedCrossRefGoogle Scholar
  71. Koritsas VM, Atkinson HJ (1994) Proteinases of females of the phytoparasite Globodera pallida (potato cyst nematode). Parasitology 109:357–365CrossRefGoogle Scholar
  72. Korth KL (2003) Profiling the response of plants to herbivorous insects. Genome Biol 4:221PubMedCrossRefGoogle Scholar
  73. Lee S, Lee SH, Choon K, Jin C, Lim C, Hee M, Han M, Je C (1999) Soybean Kunitz trypsin inhibitor (SKTI) confers resistance to the brown planthopper (Nilaparvata lugens Stal) in transgenic rice. Mol Breed 5:1–9CrossRefGoogle Scholar
  74. Li XQ, Wei JZ, Tan A, Aroian RV (2007) Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnol J 5:455–64PubMedCrossRefGoogle Scholar
  75. Lilley CJ, Urwin PE, McPherson MJ, Atkinson HJ (1996) Characterisation of intestinally active proteases of cyst-nematodes. Parasitology 113:415–424PubMedCrossRefGoogle Scholar
  76. Lilley CJ, Urwin PE, Atkinson HJ, McPherson MJ (1997) Characterisation of cDNAs encoding serine proteases from the soybean cyst nematode Heterodera glycines. Mol Biochem Parasitol 89:195–207PubMedCrossRefGoogle Scholar
  77. Lilley CJ, Urwin PE, Johnston KA, Atkinson HJ (2004) Preferential expression of a plant cystatin at nematode feeding sites confers resistance to Meloidogyne incognita and Globodera pallida. Plant Biotechnol J 2:3–12PubMedCrossRefGoogle Scholar
  78. Malik K, Mahmood T, Riazuddin S (2001) The receptor for Bacillus thuringiensis Cry 1Ac delta-endotoxin in the brush border membrane of the lepidopteran Helicoverpa armigera is aminopeptidase N. Online J Biol Sci 1:782–784CrossRefGoogle Scholar
  79. Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313PubMedCrossRefGoogle Scholar
  80. Maqbool SB, Riazuddin S, Loc NT, Gatehouse AMR, Gatehouse JA, Christou P (2001) Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol Breed 7:85–93CrossRefGoogle Scholar
  81. Martinez de Ilarduya O, Kaloshian I (2001) Mi-1.2 transcripts accumulate ubiquitously in root-knot nematode resistant Lycopersicon esculentum. J Nematol 33:116–120Google Scholar
  82. Martinez de Ilarduya O, Nombela G, Hwang CF, Williamson VM, Muñiz M, Kaloshian I (2004) Rme1 is necessary for Mi-1-mediated resistance and acts early in the resistance pathway. Mol Plant Microbe Interact 17:55–61PubMedCrossRefGoogle Scholar
  83. Marvier M, McCreedy C, Regetz J, Kareiva P (2007) A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science 316:1475–1477PubMedCrossRefGoogle Scholar
  84. McCarter JP (2008) Molecular approaches toward resistance to plant-parasitic nematodes. In: Berg RH, Taylor CG (eds) Cell biology of plant nematode parasitism. Plant cell monographs, vol 15. Springer, Heidelberg, pp 239–268CrossRefGoogle Scholar
  85. McGaughey W, Whalon M (1992) Managing insect resistance to Bacillus thuringiensis toxins. Science 258:1451–1455PubMedCrossRefGoogle Scholar
  86. McLean MD, Hoover GJ, Bancroft B, Makhmoudova A, Clark SM, Welacky T, Simmonds DH, Shelp BJ (2007) Identification of the full-length Hs1pro-1 coding sequence and preliminary evaluation of soybean cyst nematode resistance in soybean transformed with Hs1pro-1 cDNA. Can J Bot 85:437–441CrossRefGoogle Scholar
  87. Meksem KP, Pantazopoulos VN, Njiti LD, Hyten PR, Arelli DA (2001) Light foot forrest resistance to the soybean cyst nematode is bigenic: saturation mapping of the Rhg1 and Rhg4 loci. Theor Appl Genet 103:710–717CrossRefGoogle Scholar
  88. Melander M, Ahman I, Kamnert I, Strömdahl A (2003) Pea lectin expressed transgenically in oilseed rape reduces growth rate of pollen beetle larvae. Transgenic Res 12:555–567PubMedCrossRefGoogle Scholar
  89. Michelmore RW (2003) The impact zone: genomics and breeding for durable disease resistance. Curr Opin Plant Biol 6:397–404PubMedCrossRefGoogle Scholar
  90. Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319PubMedGoogle Scholar
  91. Moreno J, Chrispeels MJ (1989) A lectin gene encodes the a-amylase inhibitor of the common bean. Proc Natl Acad Sci USA 86:7885–7889PubMedCrossRefGoogle Scholar
  92. Morton R, Schroeder H, Bateman K, Chrispeels M, Armstrong E, Higgins T (2000) Bean alpha-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci USA 97:3820–3825PubMedCrossRefGoogle Scholar
  93. Nagadhara D, Ramesh S, Pasalu IC, Rao YK, Sarma NP, Reddy VD (2004) Transgenic rice plants expressing the snowdrop lectin gene (GNA) exhibit high-level resistance to the white backed planthopper (Sogatella furcifera). Theor Appl Genet 109:1399–1405PubMedCrossRefGoogle Scholar
  94. Nombela G, Williamson VM, Muniz M (2003) The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol Plant Microbe Interact 16:645–649PubMedCrossRefGoogle Scholar
  95. Octavio L, Rigden D (2000) Activity of wheat alpha-amylase inhibitors towards bruchid alpha-amylase and structural explanation of observed specificities. Eur J Biochem 267:2166–2173CrossRefGoogle Scholar
  96. Octavio L, Rigden D (2002) Plant alpha-amylase inhibitors and their interaction with alpha-amylases. Eur J Biochem 269:397–412CrossRefGoogle Scholar
  97. Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43CrossRefGoogle Scholar
  98. Oneda H, Lee S, Inouye K (2004) Inhibitory effect of 19 alpha-amylase inhibitor from wheat kernel on the activity of porcine pancreas alpha-amylase and its stability. J Biochem 135:421–427PubMedCrossRefGoogle Scholar
  99. Paal J, Henselewski H, Muth J, Meksem K, Menendez CM, Salamini F, Ballvora A, Gebhardt C. (2004) Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root nematode Globodera rostochiensis, based on a candidate gene approach. Plant J 38:285–297PubMedCrossRefGoogle Scholar
  100. Pereira R, Batista J, Silva M, Neto O, Figueira E, Jiménez A, Grossi-de-Sa A (2006) An α-amylase inhibitor gene from Phaseolus coccineus encodes a protein with potential for control of coffee berry borer (Hypothenemus hampei). Phytochemistry 67:2009–2016CrossRefGoogle Scholar
  101. Price DRG, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26:93–400CrossRefGoogle Scholar
  102. Qin L, Kudla U, Roze EHA, Goverse A, Popeijus H, Nieuwland J, Overmars H, Jones JT, Schots O, Smant G, Bakker J, Helder J (2004) A nematode expansin acting on plants. Nature 427:30PubMedCrossRefGoogle Scholar
  103. Ranjekar P, Patanka A, Gupta V, Bhatnaga R, Bentur J, Kumar P (2003) Genetic engineering of crop plants for insect resistance. Curr Sci 48:321–329Google Scholar
  104. Rao K, Rathore K, Hodges T, Fu X, Stoger E, Sudhakar D, Williams S, Christou P, Bown D, Powell K, Richardson M (1991) Seed storage proteins: the enzyme inhibitors. In: Rogers LJ (ed) Amino acids, proteins and nucleic acids. (Methods in plant biochemistry, vol 5) Academic, London, pp 259–305Google Scholar
  105. Rao KV, Rathore KS, Hodges TK, Fu X, Stoger E, Sudhakar D, Williams S, Christou P, Bharathi, M, Bown DP, Powell K, Spence J, Gatehouse AMR, Gatehouse J (1998) Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant J 15:469–477PubMedCrossRefGoogle Scholar
  106. Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71PubMedCrossRefGoogle Scholar
  107. Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754PubMedCrossRefGoogle Scholar
  108. Rouppe van der Voort J, Kanyuka K, van der Vossen E, Bendahmane A, Mooijman P, Klein-Lankhorst R, Stiekema W, Baulcombe D, Bakker J (1999) Tight physical linkage of the nematode resistance gene Gpa2 and the virus resistance gene Rx on a single segment introgressed from the wild species Solanum tuberosum subsp. andigena CPC 1673 into cultivated potato. Mol Plant Microbe Interact 12:197–206CrossRefGoogle Scholar
  109. Ruben EA, Jamai J, Afzal VN, Njiti K, Triwitayakorn MJ, Iqbal S, Yaegashi R, Bashir S, Kazi P, Arelli CD, Town H, Ishihara K, Meksem DA, Lightfoot A (2006) Genomic analysis of the rhg1 locus: candidate genes that underlie soybean resistance to the cyst nematode. Mol Gen Genomics 276:503–516CrossRefGoogle Scholar
  110. Ryan CA (1990) Protease inhibitors in plants: gene for improving defenses against insects and pathogens. Annu Rev Phytopathol 28:425–429CrossRefGoogle Scholar
  111. Schroeder S, Gollasch S, Moore A, Tabe L, Craig S, Hardie D, Chrispeels M, Spencer D, Higgins T (1995) Bean α-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum). Plant Physiol 107:1233–1239PubMedGoogle Scholar
  112. Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Insect-resistant transgenic plants. Trends Biotechnol 16:168–175CrossRefGoogle Scholar
  113. Schulte D, Cai D, Kleine M, Fan L, Wang S, Jung C (2006) A complete physical map of a wild beet (Beta procumbens) translocation in sugar beet. Mol Gen Genomics 275:504–511CrossRefGoogle Scholar
  114. Soberón M, Pardo-López L, López I, Gómez I, Tabashnik BE, Bravo A (2007) Engineering modified Bt toxins to counter insect resistance. Science 318:1640–1642PubMedCrossRefGoogle Scholar
  115. Sobczak M, Avrova A, Jupowicz J, Phillips MS, Ernst K, Kumar A (2005) Characterization of susceptibility and resistance responses to potato cyst nematode (Globodera spp.) infection of tomato lines in the absence and presence of the broad-spectrum nematode resistance Hero gene. Mol Plant Microbe Interact 18:158–168PubMedCrossRefGoogle Scholar
  116. Spence J, Bharathi M, Gatehouse A, Gatehouse J (1998) Expression of snowdrop lectin (GNA) in the phloem of transgenic rice plants confers resistance to rice brown planthopper. Plant J 14:469–477Google Scholar
  117. Starr JL, Bridge J, Cook R (2002) Resistance to plant-parasitic nematodes: history, current use and future potential. In: Starr JL, Cook R, Bridge J (eds) Plant resistance to parasitic nematodes. CAB International, Oxford, pp 1–22CrossRefGoogle Scholar
  118. Steele AE (1965) The host range of the sugarbeet nematode. Heterodera schachtii Schmidt. J Am Soc Sugar Beet Technol 13:573–603CrossRefGoogle Scholar
  119. Steeves RM, Todd TC, Essig JS, Trick HN (2006) Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction. Funct Plant Biol 33:991–999CrossRefGoogle Scholar
  120. Stuiver MH, Custers JHHV (2001) Engineering disease resistance in plants. Nature 411:865–868PubMedCrossRefGoogle Scholar
  121. Tabashnik BE, Dennehy TJ, Carriere Y (2005) Delayed resistance to transgenic cotton in pink bollworm. Proc Natl Acad Sci USA 102:15389–15393PubMedCrossRefGoogle Scholar
  122. Tabashnik BE, Gassmann AJ, Crowdwder DW, Carriere Y (2008) Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol 26:199–202PubMedCrossRefGoogle Scholar
  123. Thurau T, Kifle S, Jung C, Cai D (2003) The promoter of the nematode resistance gene Hs1 pro-1 activates a nematode-responsive and feeding site-specific gene expression in sugar beet (Beta vulgaris L.) and Arabidopsis thaliana. Plant Mol Biol 52:643–660PubMedCrossRefGoogle Scholar
  124. Titarenko E, Chrispeels M (2000) cDNA cloning, biochemical characterisation and inhibition by plant inhibititors of the α-amylases of the western corn rootworm Diabrotica virgifera virgifera. Insect Biochem Mol Biol 30:979–990PubMedCrossRefGoogle Scholar
  125. Turlings TCJ, Tumlinson JH (1992) Systemic release of chemical signals by herbivore-injured corn. Proc Natl Acad Sci USA 89:8399–8402PubMedCrossRefGoogle Scholar
  126. Urwin PE, Lilley CJ, McPherson MJ, Atkinson HJ (1997) Resistance to both cyst- and root-knot nematodes conferred by transgenic Arabidopsis expressing a modified plant cystatin. Plant J 12:455–461PubMedCrossRefGoogle Scholar
  127. Urwin PE, McPherson MJ, Atkinson HJ (1998) Enhanced transgenic plant resistance to nematodes by dual proteinase inhibitor constructs. Planta 204:472–479PubMedCrossRefGoogle Scholar
  128. Urwin PE, Levesley A, McPherson MJ, Atkinson HJ (2000) Transgenic resistance to the nematode Rotylenchulus reniformis conferred by Arabidopsis thaliana plants expressing proteinase inhibitors. Mol Breed 6:257–264CrossRefGoogle Scholar
  129. Urwin PE, Troth KM, Zubko EI, Atkinson HJ (2001) Effective transgenic resistance to Globodera pallida in potato field trials. Mol Breed 8:95–101CrossRefGoogle Scholar
  130. Vain P, Worland B, Clarke MC, Richard G, Beavis M, Liu H, Kohli A, Leech M, Snape J, Christou P, Atkinson H. (1998) Expression of an engineered cysteine proteinase inhibitor (Oryzacystatin-IΔD86) for nematode resistance intransgenic rice plants. Theor Appl Genet 96:266–271CrossRefGoogle Scholar
  131. Valentine TA, Randall E, Wypijewski K, Chapman S, Jones J, Oparka KJ (2007) Delivery of macromolecules to plant parasitic nematodes using a tobacco rattle virus vector. Plant Biotechnol J 5:827–834PubMedCrossRefGoogle Scholar
  132. van der Biezen EA, Jones JDG (1998) The NB-ARC domain: a novel signaling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 8:226–227CrossRefGoogle Scholar
  133. van der Hoorn, Renier AL, Kamounb S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–2017PubMedCrossRefGoogle Scholar
  134. van der Vossen EAG, van der Voort J, Kanyuka K, Bendahmane A, Sandbrink H, Baulcombe DC, Bakker J, Stiekema WJ, Klein-Lankhorst RM (2000) Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant J 23:567–576PubMedCrossRefGoogle Scholar
  135. Voelckel C, Baldwin IT (2004a): Generalist and specialist lepidopteran larvae elicit different transcriptional responses in Nicotiana attenuata, which correlate with larval FAC profiles. Ecol Lett 7:770–775CrossRefGoogle Scholar
  136. Voelckel C, Baldwin IT (2004b): Herbivore-specific transcriptional responses and their research potential for ecologists. Insects Ecosyst Funct 173:357–379CrossRefGoogle Scholar
  137. Vos P, Simons G, Jesse T, Wijbrandi J, Heinen L, Hogers R, Frijters A, Groenendijk J, Diergaarde P, Reijans M, Fierens-Onstenk J, de Both M, Peleman J, Liharska T, Hontelez J, Zabeau M (1998) The tomato Mi-1 gene confers resistance to both root knot nematodes and potato aphids. Nat Biotechnol 16:1365–1369PubMedCrossRefGoogle Scholar
  138. Wang XH, Aliyari R, Li WX, Li HW, Kim K, Carthew R, Atkinson P, Ding SW (2006) RNA interference directs innate immunity against viruses in adult Drosophila. Science 312:452–454PubMedCrossRefGoogle Scholar
  139. Wei JZ, Hale K, Carta L, Platzer E, Wong C, Fang SC, Arion RV (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci USA 100:2760–2765PubMedCrossRefGoogle Scholar
  140. Williamson VM (1998) Root-knot nematode resistance genes in tomato and their potential for future use. Annu Rev Phytopathol 36:277–293PubMedCrossRefGoogle Scholar
  141. Williamson VM, Kumar A (2006) Nematode resistance in plants: the battle underground. Trends Genet 22:396–403PubMedCrossRefGoogle Scholar
  142. Wolfson JL, Murdock LL (1990) Diversity in digestive proteinase activity among insects. J Chem Ecol 16:1089–1102CrossRefGoogle Scholar
  143. Wu J, Luo XL, Wang Z, Tian YC, Liang A, Sun Y (2008) Transgenic cotton expressing synthesized scorpion insect toxin AaHIT gene confers enhanced resistance to cotton bollworm (Heliothis armigera) larvae. Biotechnol Lett 30:547–554PubMedCrossRefGoogle Scholar
  144. Yao PL, Hwang MJ, Chen YM, Yeh KW (2001) Site directed mutagenesis evidence for a negatively charged trypsin inhibitory loop in sweet potato sporamin. FEBS Lett 496:134–138PubMedCrossRefGoogle Scholar
  145. Yavad BC, Veluthambi K, Subramaniam K (2006) Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol 148:219–222CrossRefGoogle Scholar
  146. Yeh KW, Lin ML, Tuan SJ, Chen YM, Lin CY, Kao SS (1997). Sweet potato (Ipomoea batatas) trypsin inhibitors expressed in transgenic tobacco plants confer resistance against Spodoptera litura. Plant Cell Rep 16:696–699CrossRefGoogle Scholar
  147. Yencho G, Cohen M, Byrne P (2000) Application of tagging and mapping insect resistance loci in plants. Annu Rev Entomol 45:393–422PubMedCrossRefGoogle Scholar
  148. Zhang CL, Xu DC, Jiang XC, Zhou Y, Cui J, Zhang CX, Chen DF, Fowler MR, Elliott MC, Scott NW, Dewar AM, Slater A (2008) Genetic approaches to sustainable pest management in sugar beet (Beta vulgaris). Ann Appl Biol 152:143–156CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Molecular PhytopathologyInstitute for Phytopathology, Christian-Albrechts-University of KielKielGermany

Personalised recommendations