Advertisement

Novel Models for Smart Hydrogel Responsive to Other Stimuli: Glucose Concentration and Ionic Strength

Chapter
  • 1.3k Downloads

Abstract

This chapter introduces the author’s latest research work, which covers the modelling of the glucose-sensitive hydrogel and the ionic strength-sensitive hydrogel, respectively.

Keywords

Glucose Oxidase Gluconic Acid Reference Configuration Fixed Charge Green Strain Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. M.J. Abdekhodaie, X.Y. Wu. (2005). Modelling of a cationic glucose-sensitive membrane with consideration of oxygen limitation. Journal of Membrane Science, 254, 119–127.CrossRefGoogle Scholar
  2. H.L. Abd El-Mohdy. (2007). Water sorption behavior of CMC/PAM hydrogels prepared by γ-irradiation and release of potassium nitrate as agrochemical. Reactive and Functional Polymers, 67, 1094–1102.CrossRefGoogle Scholar
  3. G. Albin, T.A. Horbett, S.R. Miller, N.L. Ricker. (1987). Theoretical and experimental studies of glucose sensitive membranes. Journal of Controlled Release, 6, 267–291.CrossRefGoogle Scholar
  4. J.P. Baker, H.W. Blanch, J.M. Prausnitz. (1995). Swelling properties of acrylamide-based ampholytic hydrogels: Comparison of experiment with theory. Polymer, 36, 1061–1069.CrossRefGoogle Scholar
  5. J.P. Baker, L.H. Hong, H.W. Blanch, J.M. Prausnitz. (1994). Effect of initial total monomer concentration on the swelling behavior of cationic acrylamide-based hydrogels. Macromolecules, 27, 1446–1454.CrossRefGoogle Scholar
  6. J.P. Baker, D.R. Stephens, H.W. Blanch, J.M. Prausnitz. (1992). Swelling equilibria for acrylamide-based polyampholyte hydrogels. Macromolecules, 25, 1955–1958.CrossRefGoogle Scholar
  7. A. Baldi, Y. Gu, P. Loftness, R.A. Siegel. (2003). A hydrogel-actuated environmentally-sensitive microvalve for active flow control. IEEE/ASME Journal of Microelectromechanical Systems, 12, 613–621.CrossRefGoogle Scholar
  8. I.S.I.K. Belma, D. Banu. (2005). Swelling behavior of poly (acrylamide-co-N-vinylimidazole) hydrogels under different environment conditions. Journal of Applied Polymer Science, 96, 1783–1788.CrossRefGoogle Scholar
  9. T. Belytschko, W.K. Liu, B. Moran. (2001). Nonlinear Finite Elements for Continua and Structures, New York: John Wiley and Sons.Google Scholar
  10. E. Birgersson, Hua Li, S.N. Wu. (2008). Transient analysis of temperature-sensitive neutral hydrogels. Journal of the Mechanics and Physics of Solids, 56(2), 444–466.CrossRefGoogle Scholar
  11. S. Brahim, D. Narinesingh, A. Guiseppi-Elie. (2002). Bio-smart hydrogels: Co-joined molecular recognition and signal transduction in biosensor fabrication and drug delivery. Biosensors and Bioelectronics, 17, 973–981.CrossRefGoogle Scholar
  12. L. Brannon-Peppas, N.L. Peppas, (1991). Equilibrium swelling behavior of pH-sensitive hydrogels. Chemical Engineering Science, 46, 715–722.CrossRefGoogle Scholar
  13. T. Canal, N.A. Peppas. (1989). Correlation between mesh size and equilibrium degree of swelling of polymeric networks. Journal of Biomedical Materials Research, 23, 1183–1193.CrossRefGoogle Scholar
  14. X. Cao, S. Lai, L.J. Lee. (2001). Design of a self-regulated drug delivery device. Biomedical Microdevices, 3, 109–118.CrossRefGoogle Scholar
  15. T. Caykara, I. Aycicek. (2005). External stimuli-responsive characteristics of ionic poly[(N,N-diethylaminoethyl methacrylate)-co-(N-vinyl-2-pyrrolidone)] hydrogels. Macromolecular Materials Engineering, 290, 468–474.CrossRefGoogle Scholar
  16. T. Caykara, U. Bozkaya, O. Kantoglu. (2003). Network structure and swelling behavior of poly(acrylamide/crotonic acid) hydrogels in aqueous salt solution. Journal of Polymer Science Part B: Polymer Physics, 41, 1656–1664.CrossRefGoogle Scholar
  17. T. Caykara, M. Dogmus. (2005). Swelling-shrinking behavior of poly(acrylamide-co-itaconic acid) hydrogels in water and aqueous NaCl solutions. Journal of Macromolecular Science, Part A, 42, 105–111.CrossRefGoogle Scholar
  18. T. Caykara, C. Ozyurek, O. Kantoglu, O. Guven. (2000). Equilibrium swelling behavior of pH- and temperature-sensitive poly(N-vinyl 2-pyrrolidone-g-citric acid) polyelectrolyte hydrogels. Journal of Polymer Science Part B: Polymer Physics, 38, 2063–2071.CrossRefGoogle Scholar
  19. A.P. Dhanarajan, R.A. Siegel. (2005). Time-dependent permeabilities of hydrophobic, pH-sensitive hydrogels exposed to pH gradients. Macromolecular Symposia, 227, 105–114.CrossRefGoogle Scholar
  20. D. Dhara, C.K. Nisha, P.R. Chatterji. (1999). Super absorbent hydrogels: Interpenetrating networks of poly (acrylamide-co-acrylic.acid) and poly (vinyl alcohol): Swelling behavior and structural parameters. Journal of Macromolecular Science: Pure and Applied Chemistry, A36, 197–210.CrossRefGoogle Scholar
  21. A.E. English, S. Mafe, J.A. Manzanares, X. Yu, A.Y. Grosberg, T. Tanaka. (1996). Equilibrium swelling properties of polyampholytic hydrogels. Journal of Chemistry and Physics, 104, 8713–8720.CrossRefGoogle Scholar
  22. A. Fick. (1855). On liquid diffusion. Philosophical Magazine, 10, 31–39.Google Scholar
  23. P.J. Flory. (1953). Principles of Polymer Chemistry, Ithaca, New York: Cornell University Press.Google Scholar
  24. D.A. Gough, J.Y. Lusisano, P.H.S. Tse. (1985). Two dimensional enzyme electrode sensor for glucose. Analytical Chemistry, 57, 2351–2357.CrossRefGoogle Scholar
  25. A. Guiseppi-Elie, S. Brahim, G. Slaughter, K.R. Ward. (2005). Design of a subcutaneous implantable biochip for monitoring of glucose and lactate. IEEE Sensors Journal, 5, 345–355.CrossRefGoogle Scholar
  26. A.C. Guyyon. (1991). Textbook of Medical Physiology, 8th edn. Philadelphia: W.B. Saunders Company, pp. 433–443.Google Scholar
  27. A. S. Hoffman. (2002). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 43, 3–12.CrossRefGoogle Scholar
  28. W. Hong, X.H. Zhao, J.X. Zhou, Z. Suo. (2008). A theory of coupled diffusion and large deformation in polymeric gels. Journal of the Mechanics and Physics of Solids, 56, 1779–1793.CrossRefGoogle Scholar
  29. H.H. Hooper, J.P. Baker, H.W. Blanch, J.M. Prausnitz. (1990). Swelling equilibria for positively ionized polyacrylamide hydrogels. Macromolecules, 23, 1096–1104.CrossRefGoogle Scholar
  30. I.S. Isayava, S.A. Yankovshi, J.P. Kennedy. (2002). Novel amphiphilic membranes of poly(N,N-dimethylacrylamide) crosslinked with octa-methacrylate-telechelic polyisobutylene stars. Polymer Bulletin, 48, 475–482.CrossRefGoogle Scholar
  31. K. Ishihara, K. Matsui. (1986). Glucose-responsive insulin release from polymer capsule. Journal of Polymer Science: Polymer Letters Edition, 24, 413–417.Google Scholar
  32. C.H. Jeon, E.E. Makhaeva, A.R. Khokhlov. (1998). Swelling behavior of polyelectrolyte gels in the presence of salts. Macromolecular Chemistry and Physics, 199, 2665–2670.CrossRefGoogle Scholar
  33. B.D. Johnson, D.J. Niedermaier, W.C. Crone, J. Moorthy, D.J. Beebe. (2002). Mechanical properties of a pH sensitive hydrogel, Proceedings of the 2002 Annual Conference of Society for Experimental Mechanics,Milwaukee, Wisconsin.Google Scholar
  34. S.I. Kang, Y.H. Bae. (2001). pH-induced volume-phase transition of hydrogels containing sulfonamide side group by reversible crystal formation. Macromolecules, 34, 8173–8178.CrossRefGoogle Scholar
  35. S.I. Kang, Y.H. Bae. (2002). pH-induced solubility transition of sulfonamide-based polymers. Journal of Controlled Release, 80, 145–155.CrossRefGoogle Scholar
  36. S.I. Kang, Y.H. Bae. (2003). A sulfonamide based glucose-responsive hydrogel with covalently immobilized glucose oxidase and catalase. Journal of Controlled Release, 86, 115–121.CrossRefGoogle Scholar
  37. S. Kidoaki, Y. Nakayama, T. Matsuda. (2001). Measurement of the interaction forces between proteins and iniferter-based graft-polymerized surfaces with an atomic force microscope in aqueous media. Langmuir, 17, 1080–1087.CrossRefGoogle Scholar
  38. J.J. Kim, K. Park. (2001). Modulated insulin delivery from glucose-sensitive hydrogel dosage forms. Journal of Controlled Release, 77, 39–47.CrossRefGoogle Scholar
  39. L.A. Klumb, T.A. Horbett. (1992). Design of insulin delivery device based on glucose-sensitive membrane. Journal of Controlled Release, 18, 59–80.CrossRefGoogle Scholar
  40. R.T. Kurnik, B. Berner, J. Tamada, R.O. Potts. (1998). Design and simulation of a reverse lontophoretic glucose monitoring device. Journal of electrochemistry Society, 145, 4119–4125.CrossRefGoogle Scholar
  41. W.M. Lai, J.S. Hou, V.C. Mow. (1991). A triphasic theory for the swelling and deformation behaviors of articular cartilage. ASME Journal of Biomechanical Engineering, 113, 245–258.CrossRefGoogle Scholar
  42. H. Li, J. Chen, K.Y. Lam. (2004). Multiphysical modelling and meshless simulation of electric-sensitive hydrogels. Journal of Polymer Science Part B: Polymer Physics, 42, 1514–1531.CrossRefGoogle Scholar
  43. H. Li, R.M. Luo, K.Y. Lam. (2007). Modelling and simulation of deformation of hydrogels responding to electric stimulus. Journal of Biomechanics, 40, 1091–1098.CrossRefGoogle Scholar
  44. H. Li, T.Y. Ng, J.Q. Cheng, K.Y. Lam. (2003). Hermite-cloud: A novel true meshless method. Computational Mechanics, 33, 30–41.CrossRefGoogle Scholar
  45. H. Li, Z. Yuan, K.Y. Lam, H.P. Lee, J. Chen, J. Hanes, J. Fu. (2004). Model development and numerical simulation of electric-stimulus-responsive hydrogels subject to an externally applied electric field. Biosensors and Bioelectronics, 19, 1097–1107.CrossRefGoogle Scholar
  46. Z. Lin, W. Wu, J. Wang, X. Jin. (2007). Studies on swelling behaviors, mechanical properties, network parameters and thermodynamic interaction of water sorption of 2-hydroxyethyl methacrylate/novolac epoxy vinyl ester resin copolymeric hydrogels. Reactive and Functional Polymers, 67, 789–797.CrossRefGoogle Scholar
  47. H. Liu, M. Zhen, R. Wu. (2007). Ionic-strength- and pH-responsive poly[acrylamide-co-(maleic acid)] hydrogel nanofibers. Macromolecular Chemistry and Physics, 208, 874–880.CrossRefGoogle Scholar
  48. R.M. Luo, Hua Li, K.Y. Lam. (2007a). Modelling and simulation of chemo-electro-mechanical behavior of pH-electric-sensitive hydrogel. Analytical and Bioanalytical Chemistry, 389, 863–873.Google Scholar
  49. R.M. Luo, Hua Li, K.Y. Lam. (2007b). Coupled chemo-electro-mechanical simulation for smart hydrogels that are responsive to an external electric field. Smart Materials and Structures, 16(4), 1185–1191.Google Scholar
  50. J.Y. Lusisano, D.A. Gough. (1988). Transient response of the two dimensional glucose sensor. Analytical Chemistry, 60, 1272–1281.CrossRefGoogle Scholar
  51. A.D. MacGillivray. (1968). Nernst–Planck equation and the electroneutrality and Donnan equilibrium assumptions. Journal of Chemical Physics, 48, 2903–2907.CrossRefGoogle Scholar
  52. A.D. MacGillivray, D. Hare. (1969). Applicability of goldman’s constant field assumption to biological systems. Journal of Theoretical Biology, 25, 113–126.CrossRefGoogle Scholar
  53. G.P. Misra, R.A. Siegel. (2002). New mode of drug delivery: Long term autonomous rhythmic hormone release across a hydrogel membrane. Journal of Controlled Release, 81, 1–6.CrossRefGoogle Scholar
  54. V. Nikonenko, K. Lebedev, J.A. Manzanares, G. Pourcelly. (2003). Modelling the transport of carbonic acid anions through anion-exchange membranes. Electrochimica Acta, 48, 3639–3650.CrossRefGoogle Scholar
  55. I. Ohmine, T. Tanaka. (1982). Salt effects on the phase transition of ionic gels. Journal of Chemistry and Physics, 77, 5725–5729.CrossRefGoogle Scholar
  56. O. Okay, S.B. Sariisik, S.D. Zor. (1998). Swelling behavior of anionic acrylamide-based hydrogels in aqueous salt solutions: Comparison of experiment with theory. Journal of Applied Polymer Science, 70, 567–575.CrossRefGoogle Scholar
  57. R.S. Parker, F.J. Doyle III, N.A. Peppas. (1999). A model-based algorithm for blood glucose control in type I diabetic patients. IEEE Transactions on Biomedical Engineering, 46, 148–157.CrossRefGoogle Scholar
  58. J.W. Parker, C.S. Schwartz. (1987). Modelling the kinetics of immobilized glucose oxidase. Biotechnology and Bioengineering, 30, 724–735.CrossRefGoogle Scholar
  59. N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa. (2000). Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics, 50, 27–46.CrossRefGoogle Scholar
  60. J.L. Plawsky. (2001). Transport Phenomena Fundamentals, New York: Marcel Dekker Inc.Google Scholar
  61. K. Podual, N.A. Peppas. (2005). Relaxational behavior and swelling-pH master curves of poly[(diethylaminoethyl methacrylate)-graft-(ethylene glycol)] hydrogels. Polymer International, 54, 581–593.CrossRefGoogle Scholar
  62. M.M. Prange, H.H. Hooper, J.M. Prausnitz. (1989). Thermodynamics of aqueous systems containing hydrophilic polymers or gels. AIChE Journal, 35, 803–813.CrossRefGoogle Scholar
  63. Y. Qiu, K.N. Park. (2001). Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 53, 321–339.CrossRefGoogle Scholar
  64. E. Samson, J. Marchand. (1999). Numerical solution of the extended Nernst–Planck model. Journal of Colloid and Interface Science, 215, 1–8.CrossRefGoogle Scholar
  65. R.A. Siegel, Y.D. Gu, A. Baldi, B. Ziaie. (2004). Novel swelling/shrinking behaviors of glucose-binding hydrogels and their potential use in a microfluidic insulin delivery system. Macromolecular Symposia, 207, 249–256.CrossRefGoogle Scholar
  66. P.J. Sinko. (2006). Martin’s Physical Pharmacy and Pharmaceutical Sciences, Pennsylvania: Lippincott Williams & Wilkins.Google Scholar
  67. K.D. Sudipto, N.R. Aluru, B. Johnson, W.C. Crone, D.J. Beebe, J. Moore. (2002). Equilibrium swelling and kinetics of pH-responsive hydrogels: Models, experiments, and simulations. Journal of Microelectromechanical Systems, 11, 544–555.CrossRefGoogle Scholar
  68. H. Suzuki, A. Kumagai. (2003). A disposable biosensor employing a glucose-sensitive biochemomechanical gel. Biosensor and Bioelectronics, 18, 1289–1297.CrossRefGoogle Scholar
  69. T. Traitel, Y. Cohen, J. Kost. (2000). Characterization of glucose-sensitive insulin release systems in simulated in vivo conditions. Biomaterials, 21, 1679–1687.CrossRefGoogle Scholar
  70. T. Traitel, J. Kost, S.A. Lapidot. (2003). Modelling ionic hydrogels swelling: Characterization of the Non-steady state. Biotechnology and Bioengineering, 84, 20–28.CrossRefGoogle Scholar
  71. P.H.S. Tse, D.A. Gough. (1987). Time-dependent inactivation of immobilized glucose oxidase and catalase. Biotechnology and Bioengineering, 29, 705–713.CrossRefGoogle Scholar
  72. R.V. Ulijn, N. Bibi, V. Jayawarna, P.D. Thornton, S.J. Rodd, R.J. Mart, A.M. Smith, J.E. Gough. (2007). Bioresponsive hydrogels. Materials Today, 10, 40–48.CrossRefGoogle Scholar
  73. J.R. Whitaker. (1994). Principle of Enzymology for the Food Science, 2nd ed. New York: Marcel Dekker Inc.Google Scholar
  74. S. Whitaker. (1999). The Method of Volume Averaging, Dordrecht: Kluwer.Google Scholar
  75. K. Zhang, X.Y. Wu. (2002). Modulated insulin permeation across a glucose sensitive polymeric composite membrane. Journal of Controlled Release, 80, 169–181.CrossRefGoogle Scholar
  76. B. Zhao, J.S. Moore. (2001). Fast pH- and ionic strength-responsive hydrogels in microchannels. Langmuir, 17, 4758–4763.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hua Li
    • 1
  1. 1.College of Engineering School of Mechanical & Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations