Skip to main content

Novel Models for Smart Hydrogel Responsive to Other Stimuli: Glucose Concentration and Ionic Strength

  • Chapter
  • First Online:
Book cover Smart Hydrogel Modelling
  • 1595 Accesses

Abstract

This chapter introduces the author’s latest research work, which covers the modelling of the glucose-sensitive hydrogel and the ionic strength-sensitive hydrogel, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M.J. Abdekhodaie, X.Y. Wu. (2005). Modelling of a cationic glucose-sensitive membrane with consideration of oxygen limitation. Journal of Membrane Science, 254, 119–127.

    Article  CAS  Google Scholar 

  • H.L. Abd El-Mohdy. (2007). Water sorption behavior of CMC/PAM hydrogels prepared by γ-irradiation and release of potassium nitrate as agrochemical. Reactive and Functional Polymers, 67, 1094–1102.

    Article  Google Scholar 

  • G. Albin, T.A. Horbett, S.R. Miller, N.L. Ricker. (1987). Theoretical and experimental studies of glucose sensitive membranes. Journal of Controlled Release, 6, 267–291.

    Article  CAS  Google Scholar 

  • J.P. Baker, H.W. Blanch, J.M. Prausnitz. (1995). Swelling properties of acrylamide-based ampholytic hydrogels: Comparison of experiment with theory. Polymer, 36, 1061–1069.

    Article  CAS  Google Scholar 

  • J.P. Baker, L.H. Hong, H.W. Blanch, J.M. Prausnitz. (1994). Effect of initial total monomer concentration on the swelling behavior of cationic acrylamide-based hydrogels. Macromolecules, 27, 1446–1454.

    Article  CAS  Google Scholar 

  • J.P. Baker, D.R. Stephens, H.W. Blanch, J.M. Prausnitz. (1992). Swelling equilibria for acrylamide-based polyampholyte hydrogels. Macromolecules, 25, 1955–1958.

    Article  CAS  Google Scholar 

  • A. Baldi, Y. Gu, P. Loftness, R.A. Siegel. (2003). A hydrogel-actuated environmentally-sensitive microvalve for active flow control. IEEE/ASME Journal of Microelectromechanical Systems, 12, 613–621.

    Article  Google Scholar 

  • I.S.I.K. Belma, D. Banu. (2005). Swelling behavior of poly (acrylamide-co-N-vinylimidazole) hydrogels under different environment conditions. Journal of Applied Polymer Science, 96, 1783–1788.

    Article  Google Scholar 

  • T. Belytschko, W.K. Liu, B. Moran. (2001). Nonlinear Finite Elements for Continua and Structures, New York: John Wiley and Sons.

    Google Scholar 

  • E. Birgersson, Hua Li, S.N. Wu. (2008). Transient analysis of temperature-sensitive neutral hydrogels. Journal of the Mechanics and Physics of Solids, 56(2), 444–466.

    Article  CAS  Google Scholar 

  • S. Brahim, D. Narinesingh, A. Guiseppi-Elie. (2002). Bio-smart hydrogels: Co-joined molecular recognition and signal transduction in biosensor fabrication and drug delivery. Biosensors and Bioelectronics, 17, 973–981.

    Article  CAS  Google Scholar 

  • L. Brannon-Peppas, N.L. Peppas, (1991). Equilibrium swelling behavior of pH-sensitive hydrogels. Chemical Engineering Science, 46, 715–722.

    Article  CAS  Google Scholar 

  • T. Canal, N.A. Peppas. (1989). Correlation between mesh size and equilibrium degree of swelling of polymeric networks. Journal of Biomedical Materials Research, 23, 1183–1193.

    Article  CAS  Google Scholar 

  • X. Cao, S. Lai, L.J. Lee. (2001). Design of a self-regulated drug delivery device. Biomedical Microdevices, 3, 109–118.

    Article  CAS  Google Scholar 

  • T. Caykara, I. Aycicek. (2005). External stimuli-responsive characteristics of ionic poly[(N,N-diethylaminoethyl methacrylate)-co-(N-vinyl-2-pyrrolidone)] hydrogels. Macromolecular Materials Engineering, 290, 468–474.

    Article  CAS  Google Scholar 

  • T. Caykara, U. Bozkaya, O. Kantoglu. (2003). Network structure and swelling behavior of poly(acrylamide/crotonic acid) hydrogels in aqueous salt solution. Journal of Polymer Science Part B: Polymer Physics, 41, 1656–1664.

    Article  CAS  Google Scholar 

  • T. Caykara, M. Dogmus. (2005). Swelling-shrinking behavior of poly(acrylamide-co-itaconic acid) hydrogels in water and aqueous NaCl solutions. Journal of Macromolecular Science, Part A, 42, 105–111.

    Article  Google Scholar 

  • T. Caykara, C. Ozyurek, O. Kantoglu, O. Guven. (2000). Equilibrium swelling behavior of pH- and temperature-sensitive poly(N-vinyl 2-pyrrolidone-g-citric acid) polyelectrolyte hydrogels. Journal of Polymer Science Part B: Polymer Physics, 38, 2063–2071.

    Article  CAS  Google Scholar 

  • A.P. Dhanarajan, R.A. Siegel. (2005). Time-dependent permeabilities of hydrophobic, pH-sensitive hydrogels exposed to pH gradients. Macromolecular Symposia, 227, 105–114.

    Article  CAS  Google Scholar 

  • D. Dhara, C.K. Nisha, P.R. Chatterji. (1999). Super absorbent hydrogels: Interpenetrating networks of poly (acrylamide-co-acrylic.acid) and poly (vinyl alcohol): Swelling behavior and structural parameters. Journal of Macromolecular Science: Pure and Applied Chemistry, A36, 197–210.

    Article  CAS  Google Scholar 

  • A.E. English, S. Mafe, J.A. Manzanares, X. Yu, A.Y. Grosberg, T. Tanaka. (1996). Equilibrium swelling properties of polyampholytic hydrogels. Journal of Chemistry and Physics, 104, 8713–8720.

    Article  CAS  Google Scholar 

  • A. Fick. (1855). On liquid diffusion. Philosophical Magazine, 10, 31–39.

    Google Scholar 

  • P.J. Flory. (1953). Principles of Polymer Chemistry, Ithaca, New York: Cornell University Press.

    Google Scholar 

  • D.A. Gough, J.Y. Lusisano, P.H.S. Tse. (1985). Two dimensional enzyme electrode sensor for glucose. Analytical Chemistry, 57, 2351–2357.

    Article  CAS  Google Scholar 

  • A. Guiseppi-Elie, S. Brahim, G. Slaughter, K.R. Ward. (2005). Design of a subcutaneous implantable biochip for monitoring of glucose and lactate. IEEE Sensors Journal, 5, 345–355.

    Article  CAS  Google Scholar 

  • A.C. Guyyon. (1991). Textbook of Medical Physiology, 8th edn. Philadelphia: W.B. Saunders Company, pp. 433–443.

    Google Scholar 

  • A. S. Hoffman. (2002). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 43, 3–12.

    Article  Google Scholar 

  • W. Hong, X.H. Zhao, J.X. Zhou, Z. Suo. (2008). A theory of coupled diffusion and large deformation in polymeric gels. Journal of the Mechanics and Physics of Solids, 56, 1779–1793.

    Article  CAS  Google Scholar 

  • H.H. Hooper, J.P. Baker, H.W. Blanch, J.M. Prausnitz. (1990). Swelling equilibria for positively ionized polyacrylamide hydrogels. Macromolecules, 23, 1096–1104.

    Article  CAS  Google Scholar 

  • I.S. Isayava, S.A. Yankovshi, J.P. Kennedy. (2002). Novel amphiphilic membranes of poly(N,N-dimethylacrylamide) crosslinked with octa-methacrylate-telechelic polyisobutylene stars. Polymer Bulletin, 48, 475–482.

    Article  Google Scholar 

  • K. Ishihara, K. Matsui. (1986). Glucose-responsive insulin release from polymer capsule. Journal of Polymer Science: Polymer Letters Edition, 24, 413–417.

    CAS  Google Scholar 

  • C.H. Jeon, E.E. Makhaeva, A.R. Khokhlov. (1998). Swelling behavior of polyelectrolyte gels in the presence of salts. Macromolecular Chemistry and Physics, 199, 2665–2670.

    Article  CAS  Google Scholar 

  • B.D. Johnson, D.J. Niedermaier, W.C. Crone, J. Moorthy, D.J. Beebe. (2002). Mechanical properties of a pH sensitive hydrogel, Proceedings of the 2002 Annual Conference of Society for Experimental Mechanics,Milwaukee, Wisconsin.

    Google Scholar 

  • S.I. Kang, Y.H. Bae. (2001). pH-induced volume-phase transition of hydrogels containing sulfonamide side group by reversible crystal formation. Macromolecules, 34, 8173–8178.

    Article  CAS  Google Scholar 

  • S.I. Kang, Y.H. Bae. (2002). pH-induced solubility transition of sulfonamide-based polymers. Journal of Controlled Release, 80, 145–155.

    Article  CAS  Google Scholar 

  • S.I. Kang, Y.H. Bae. (2003). A sulfonamide based glucose-responsive hydrogel with covalently immobilized glucose oxidase and catalase. Journal of Controlled Release, 86, 115–121.

    Article  CAS  Google Scholar 

  • S. Kidoaki, Y. Nakayama, T. Matsuda. (2001). Measurement of the interaction forces between proteins and iniferter-based graft-polymerized surfaces with an atomic force microscope in aqueous media. Langmuir, 17, 1080–1087.

    Article  CAS  Google Scholar 

  • J.J. Kim, K. Park. (2001). Modulated insulin delivery from glucose-sensitive hydrogel dosage forms. Journal of Controlled Release, 77, 39–47.

    Article  CAS  Google Scholar 

  • L.A. Klumb, T.A. Horbett. (1992). Design of insulin delivery device based on glucose-sensitive membrane. Journal of Controlled Release, 18, 59–80.

    Article  CAS  Google Scholar 

  • R.T. Kurnik, B. Berner, J. Tamada, R.O. Potts. (1998). Design and simulation of a reverse lontophoretic glucose monitoring device. Journal of electrochemistry Society, 145, 4119–4125.

    Article  CAS  Google Scholar 

  • W.M. Lai, J.S. Hou, V.C. Mow. (1991). A triphasic theory for the swelling and deformation behaviors of articular cartilage. ASME Journal of Biomechanical Engineering, 113, 245–258.

    Article  CAS  Google Scholar 

  • H. Li, J. Chen, K.Y. Lam. (2004). Multiphysical modelling and meshless simulation of electric-sensitive hydrogels. Journal of Polymer Science Part B: Polymer Physics, 42, 1514–1531.

    Article  CAS  Google Scholar 

  • H. Li, R.M. Luo, K.Y. Lam. (2007). Modelling and simulation of deformation of hydrogels responding to electric stimulus. Journal of Biomechanics, 40, 1091–1098.

    Article  Google Scholar 

  • H. Li, T.Y. Ng, J.Q. Cheng, K.Y. Lam. (2003). Hermite-cloud: A novel true meshless method. Computational Mechanics, 33, 30–41.

    Article  CAS  Google Scholar 

  • H. Li, Z. Yuan, K.Y. Lam, H.P. Lee, J. Chen, J. Hanes, J. Fu. (2004). Model development and numerical simulation of electric-stimulus-responsive hydrogels subject to an externally applied electric field. Biosensors and Bioelectronics, 19, 1097–1107.

    Article  CAS  Google Scholar 

  • Z. Lin, W. Wu, J. Wang, X. Jin. (2007). Studies on swelling behaviors, mechanical properties, network parameters and thermodynamic interaction of water sorption of 2-hydroxyethyl methacrylate/novolac epoxy vinyl ester resin copolymeric hydrogels. Reactive and Functional Polymers, 67, 789–797.

    Article  CAS  Google Scholar 

  • H. Liu, M. Zhen, R. Wu. (2007). Ionic-strength- and pH-responsive poly[acrylamide-co-(maleic acid)] hydrogel nanofibers. Macromolecular Chemistry and Physics, 208, 874–880.

    Article  CAS  Google Scholar 

  • R.M. Luo, Hua Li, K.Y. Lam. (2007a). Modelling and simulation of chemo-electro-mechanical behavior of pH-electric-sensitive hydrogel. Analytical and Bioanalytical Chemistry, 389, 863–873.

    Google Scholar 

  • R.M. Luo, Hua Li, K.Y. Lam. (2007b). Coupled chemo-electro-mechanical simulation for smart hydrogels that are responsive to an external electric field. Smart Materials and Structures, 16(4), 1185–1191.

    Google Scholar 

  • J.Y. Lusisano, D.A. Gough. (1988). Transient response of the two dimensional glucose sensor. Analytical Chemistry, 60, 1272–1281.

    Article  Google Scholar 

  • A.D. MacGillivray. (1968). Nernst–Planck equation and the electroneutrality and Donnan equilibrium assumptions. Journal of Chemical Physics, 48, 2903–2907.

    Article  CAS  Google Scholar 

  • A.D. MacGillivray, D. Hare. (1969). Applicability of goldman’s constant field assumption to biological systems. Journal of Theoretical Biology, 25, 113–126.

    Article  CAS  Google Scholar 

  • G.P. Misra, R.A. Siegel. (2002). New mode of drug delivery: Long term autonomous rhythmic hormone release across a hydrogel membrane. Journal of Controlled Release, 81, 1–6.

    Article  CAS  Google Scholar 

  • V. Nikonenko, K. Lebedev, J.A. Manzanares, G. Pourcelly. (2003). Modelling the transport of carbonic acid anions through anion-exchange membranes. Electrochimica Acta, 48, 3639–3650.

    Article  CAS  Google Scholar 

  • I. Ohmine, T. Tanaka. (1982). Salt effects on the phase transition of ionic gels. Journal of Chemistry and Physics, 77, 5725–5729.

    Article  CAS  Google Scholar 

  • O. Okay, S.B. Sariisik, S.D. Zor. (1998). Swelling behavior of anionic acrylamide-based hydrogels in aqueous salt solutions: Comparison of experiment with theory. Journal of Applied Polymer Science, 70, 567–575.

    Article  CAS  Google Scholar 

  • R.S. Parker, F.J. Doyle III, N.A. Peppas. (1999). A model-based algorithm for blood glucose control in type I diabetic patients. IEEE Transactions on Biomedical Engineering, 46, 148–157.

    Article  CAS  Google Scholar 

  • J.W. Parker, C.S. Schwartz. (1987). Modelling the kinetics of immobilized glucose oxidase. Biotechnology and Bioengineering, 30, 724–735.

    Article  CAS  Google Scholar 

  • N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa. (2000). Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics, 50, 27–46.

    Article  CAS  Google Scholar 

  • J.L. Plawsky. (2001). Transport Phenomena Fundamentals, New York: Marcel Dekker Inc.

    Google Scholar 

  • K. Podual, N.A. Peppas. (2005). Relaxational behavior and swelling-pH master curves of poly[(diethylaminoethyl methacrylate)-graft-(ethylene glycol)] hydrogels. Polymer International, 54, 581–593.

    Article  CAS  Google Scholar 

  • M.M. Prange, H.H. Hooper, J.M. Prausnitz. (1989). Thermodynamics of aqueous systems containing hydrophilic polymers or gels. AIChE Journal, 35, 803–813.

    Article  CAS  Google Scholar 

  • Y. Qiu, K.N. Park. (2001). Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 53, 321–339.

    Article  CAS  Google Scholar 

  • E. Samson, J. Marchand. (1999). Numerical solution of the extended Nernst–Planck model. Journal of Colloid and Interface Science, 215, 1–8.

    Article  CAS  Google Scholar 

  • R.A. Siegel, Y.D. Gu, A. Baldi, B. Ziaie. (2004). Novel swelling/shrinking behaviors of glucose-binding hydrogels and their potential use in a microfluidic insulin delivery system. Macromolecular Symposia, 207, 249–256.

    Article  CAS  Google Scholar 

  • P.J. Sinko. (2006). Martin’s Physical Pharmacy and Pharmaceutical Sciences, Pennsylvania: Lippincott Williams & Wilkins.

    Google Scholar 

  • K.D. Sudipto, N.R. Aluru, B. Johnson, W.C. Crone, D.J. Beebe, J. Moore. (2002). Equilibrium swelling and kinetics of pH-responsive hydrogels: Models, experiments, and simulations. Journal of Microelectromechanical Systems, 11, 544–555.

    Article  Google Scholar 

  • H. Suzuki, A. Kumagai. (2003). A disposable biosensor employing a glucose-sensitive biochemomechanical gel. Biosensor and Bioelectronics, 18, 1289–1297.

    Article  CAS  Google Scholar 

  • T. Traitel, Y. Cohen, J. Kost. (2000). Characterization of glucose-sensitive insulin release systems in simulated in vivo conditions. Biomaterials, 21, 1679–1687.

    Article  CAS  Google Scholar 

  • T. Traitel, J. Kost, S.A. Lapidot. (2003). Modelling ionic hydrogels swelling: Characterization of the Non-steady state. Biotechnology and Bioengineering, 84, 20–28.

    Article  CAS  Google Scholar 

  • P.H.S. Tse, D.A. Gough. (1987). Time-dependent inactivation of immobilized glucose oxidase and catalase. Biotechnology and Bioengineering, 29, 705–713.

    Article  CAS  Google Scholar 

  • R.V. Ulijn, N. Bibi, V. Jayawarna, P.D. Thornton, S.J. Rodd, R.J. Mart, A.M. Smith, J.E. Gough. (2007). Bioresponsive hydrogels. Materials Today, 10, 40–48.

    Article  CAS  Google Scholar 

  • J.R. Whitaker. (1994). Principle of Enzymology for the Food Science, 2nd ed. New York: Marcel Dekker Inc.

    Google Scholar 

  • S. Whitaker. (1999). The Method of Volume Averaging, Dordrecht: Kluwer.

    Google Scholar 

  • K. Zhang, X.Y. Wu. (2002). Modulated insulin permeation across a glucose sensitive polymeric composite membrane. Journal of Controlled Release, 80, 169–181.

    Article  CAS  Google Scholar 

  • B. Zhao, J.S. Moore. (2001). Fast pH- and ionic strength-responsive hydrogels in microchannels. Langmuir, 17, 4758–4763.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, H. (2009). Novel Models for Smart Hydrogel Responsive to Other Stimuli: Glucose Concentration and Ionic Strength. In: Smart Hydrogel Modelling. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02368-2_6

Download citation

Publish with us

Policies and ethics