Multi-Effect-Coupling Thermal-Stimulus (MECtherm) Model for Temperature-Sensitive Hydrogel



In this chapter, two models are developed mathematically for steady-state simulation of the temperature-sensitive ionized hydrogel and for transient simulation of the temperature-sensitive neutral hydrogel respectively, based on the analysis of the fundamental interactions during the swelling or shrinking of the smart hydrogel. One is a novel multiphysics model, termed the multi-effect-coupling thermal-stimulus (MECtherm) model, which consists of a transcendental equation and the nonlinear coupled Poisson–Nernst–Planck partial differential equations, and it is developed for simulation of the volume phase transition of ionized temperature-sensitive hydrogel at swelling equilibrium state. The other is a transient model for kinetics of temperature-sensitive neutral hydrogel, which is contributed mainly by Erik Birgersson (2008) who is one of the important collaborators of the author.


Lower Critical Solution Temperature Volume Phase Transition Deformation Gradient Tensor Volume Phase Transition Temperature Fixed Charge Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. E.C. Achilleos, K.N. Christodoulou, I.G. Kevrekidis. (2001). A transport model for swelling of polyelectrolyte gels in simple and complex geometries. Computational and Theoretical Polymer Science, 11, 63–80.CrossRefGoogle Scholar
  2. E.C. Achilleos, R.K. Prud’homme, K.N. Christodoulou, K.R. Gee, I.G. Kevrekidis. (2000a). Dynamic deformation visualization in swelling of polymer gels. Chemical Engineering Science, 55, 3335–3340.Google Scholar
  3. E.C. Achilleos, R.K. Prud’homme, I.G. Kevrekidis, K.N. Christodoulou, K.R. Gee. (2000b). Quantifying deformation in gel swelling experiments and simulations. AIChE Journal, 46, 2128–2139.Google Scholar
  4. M. Andersson, A. Axelsson, G. Zacchi. (1998). Swelling kinetics of poly (N-isopropylacrylamide) gel. Journal of Controlled Release, 50, 273–281.CrossRefGoogle Scholar
  5. T. Araki, H. Tanaka. (2001). Three-dimensional numerical simulations of viscoelastic phase separation: Morphological characteristics. Macromolecules, 34, 1953–1963.CrossRefGoogle Scholar
  6. G.A. Athesian, N.O. Chahine, I.M. Basalo, C.T. Hung. (2004). The correspondence between equilibrium biphasic and triphasic material properties in mixture models of articular cartilage. Journal of Biomechanics, 37, 391–400.Google Scholar
  7. R.J. Atkin, R.E. Craine. (1976). Continuum theories of mixtures: Basic theory and historical development. The Quarterly Journal of Mechanics and Applied Mathematics, 29, 209–244.CrossRefGoogle Scholar
  8. Y.H. Bae, T. Okano, S.W. Kim. (1989). Insulin permeation through thermo-sensitive hydrogels. Journal of Controlled Release, 9, 271–279.CrossRefGoogle Scholar
  9. Y.C. Bae, J.J. Shim, D.S. Soane, J.M. Prausniz. (1993). Representation of vapor–liquid and liquid–liquid equilibria for binary systems containing polymers: Applicability of an extended Flory-Huggins equation. Journal Applied Polymer Science, 47, 1193–1206.Google Scholar
  10. J.P. Baker, L.H. Hong, H.W. Blanch, J.M. Prausnitz. (1994). Effect of initial total monomer concentration on the swelling behavior of cationic acrylamide-based hydrogels. Macromolecules, 27, 1446–1454.CrossRefGoogle Scholar
  11. B. Barriere, L. Leibler. (2003). Kinetics of solvent absorption and permeation through a highly swellable elastomeric network. Journal of Polymer Science Part B: Polymer Physics, 41, 166–182.CrossRefGoogle Scholar
  12. R.B. Bird, W.E. Stewart, E.N. Lightfoot. (2002). Transport Phenomena, 2nd edn. New York: John Wiley and Sons.Google Scholar
  13. E. Birgersson, H. Li, S.N. Wu. (2008). Transient analysis of temperature-sensitive neutral hydrogels. Journal of the Mechanics and Physics of Solids, 56, 444–466.CrossRefGoogle Scholar
  14. T.M. Birshtein, V.A. Pryamitsyn. (1991). Coil-globule type transitions in polymers. 2. Theory of coil-globule transition in linear macromolecules. Macromolecules, 24, 1554–1560.CrossRefGoogle Scholar
  15. M.A.T. Bisschops, K. Ch, A.M. Luyben, L.A.M. van der Wielen. (1998). Generalized Maxwell-Stefan approach for swelling kinetics of Dextran gels. Industrial & Engineering Chemistry Research, 37, 3312–3322.Google Scholar
  16. R.M. Bowen. (1980). Incompressible porous media models by use of the theory of mixtures. International Journal of Engineering Science 18, 1129–1148.CrossRefGoogle Scholar
  17. G. Camera-Roda, G.C. Sarti. (1990). Mass transport with relaxation in polymers. AIChE Journal, 36, 851–860.Google Scholar
  18. J. Chen, H. Park, K. Park. (1999). Synthesis of superporous hydrogels: Hydrogels with fast swelling and superabsorbent properties. Journal of Biomedical Materials Research, 44, 53–62.CrossRefGoogle Scholar
  19. S.X. Cheng, J.T. Zhang, R.X. Zhuo. (2003). Macroporous poly(N-isopropylacrylamide) hydrogels with fast response rates and improved protein release properties. Journal of Biomedical Materials Research, 67, 96–103.CrossRefGoogle Scholar
  20. J.M. Chern, W.F. Lee, Y. Hsieh. (2004). Preparation and swelling characterization of poly(N-isopropylacrylamide)-based porous hydrogels. Journal of Applied Polymer Science, 92, 3651–3658.CrossRefGoogle Scholar
  21. D.T. Chung, C.O. Horgan, R. Abeyaratne. (1986). The finite deformation of internally pressurized hollow cylinders and spheres for a class of compressible elastic materials. International Journal of Solids and Structures, 22, 1557–1570.CrossRefGoogle Scholar
  22. I. Colombo, M. Grassi, M. Fermeglia, R. Lapasin, S. Pricl. (1996). Modelling phase transitions and sorption desorption kinetics in thermo-sensitive gels for controlled drug delivery systems. Fluid Phase Equilibria, 116, 148–161.CrossRefGoogle Scholar
  23. M. Doi. (1990). Effects of Viscoelasticity on Polymer Diffusion, Springer Proceedings in Physics, Vol. 52, Berlin/Heidelberg: Springer-Verlag.Google Scholar
  24. J. Dolbow, E. Fried, H. Ji. (2004). Chemically induced swelling of hydrogels. Journal of the Mechanics and Physics of Solids, 52, 51–84.CrossRefGoogle Scholar
  25. J. Dolbow, E. Fried, H. Ji. (2005). A numerical strategy for investigating the kinetic response of stimulus-responsive hydrogels. Computer Methods in Applied Mechanics and Engineering, 194, 4447–4480.CrossRefGoogle Scholar
  26. D.T. Eddington, D.J. Beebe. (2004). Flow control with hydrogels. Advanced Drug Delivery Reviews, 56, 199–210.CrossRefGoogle Scholar
  27. B. Erman, P.J. Flory. (1986). Critical phenomena and transitions in swollen polymer networks and in linear macromolecules. Macromolecules, 19, 2342–2353.CrossRefGoogle Scholar
  28. P.J. Flory. (1953). Principles of Polymer Chemistry, Ithaca, New York: Cornell University Press.Google Scholar
  29. I.Y. Galaev, B. Mattiasson. (1999). ‘Smart’ polymers and what they could do in biotechnology and medicine. Trends in Biotechnology, 17, 335–340.CrossRefGoogle Scholar
  30. D. Gawin, C.E. Majorana, B.A. Schrefler. (1999). Numerical analysis of hygro-thermal behaviour and damage of concrete at high temperature. Mechanics of Cohesive-frictional Materials, 4, 37–74.CrossRefGoogle Scholar
  31. S.H. Gehrke. (1993). Synthesis, equilibrium swelling, kinetics, permeability and applications of environmentally responsive gels. Advances in Polymer Science, 110, 81–144.CrossRefGoogle Scholar
  32. Y.K. Godovsky. (1992). Thermophysical Properties of Polymers, New York: Springer-Verlag.Google Scholar
  33. M. Grassi, I. Colombo, R. Lapasin. (2000). Drug release from an ensemble of swellable crosslinked polymer particles. Journal of Controlled Release, 68, 97–113.CrossRefGoogle Scholar
  34. C.A. Grattoni, H.H. Al-Sharji, C. Yang, A.H. Muggeridge, R.W. Zimmerman. (2001). Rheology and permeability of cross-linked polyacrylamide gel. Journal of Colloid and Interface Science, 240, 601–607.CrossRefGoogle Scholar
  35. T. Hino, J.M. Prausnitz. (1998). Molecular thermodynamics for volume-change transitions in temperature-sensitive polymer gels. Polymer, 39, 3279–3283.CrossRefGoogle Scholar
  36. S. Hirotsu. (1987). Phase transition of a polymer gel in pure and mixed solvent media. Journal of the Physical Society of Japan, 56, 233–242.Google Scholar
  37. S. Hirotsu. (1991). Softening of bulk modulus and negative Poisson’s ratio near the volume phase transition of polymer gels. Journal of Chemical Physics, 94, 3949–3957.CrossRefGoogle Scholar
  38. S. Hirotsu. (1993). Coexistence of phases and the nature of first-order phase transition in poly-N-isopropylacrylamide gels. Advances in Polymer Science, 110, 1–26.CrossRefGoogle Scholar
  39. S. Hirotsu, Y. Hirokawa, T. Tanaka. (1987). Volume-phase transitions of ionized N-isopropylacrylamide gels. Journal of Chemical Physics, 87, 1392–1395.CrossRefGoogle Scholar
  40. A. S. Hoffman. (2002). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 43, 3–12.CrossRefGoogle Scholar
  41. M.H. Holmes. (1986). Finite deformation of soft tissue: Analysis of a mixture model in uni-axial compression. ASME Journal of Biomechanical Engineering, 108, 372–381.CrossRefGoogle Scholar
  42. M.H. Holmes, W.M. Lai, V.C. Mow. (1985). Singular perturbation analysis of the nonlinear, flow-dependent compressive stress relaxation behavior of articular cartilage. ASME Journal of Biomechanical Engineering, 107, 206–218.CrossRefGoogle Scholar
  43. M.H. Holmes, V.C. Mow. (1990). The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. Journal of Biomechanics, 23, 1145–1156.CrossRefGoogle Scholar
  44. G.H. Holzapfel. (2000). Nonlinear Solid Mechanics, A Continuum Approach for Engineering, Chichester, UK: John Wiley & Sons.Google Scholar
  45. J.M. Huyghe, J.D. Janssen. (1999). Thermo-chemo-electro-mechanical formulation of saturated charged porous solids. Transport in Porous Media, 34, 129–141.CrossRefGoogle Scholar
  46. H. Ji, H. Mourad, E. Fried, J. Dolbow. (2006). Kinetics of thermally induced swelling of hydrogels. International Journal of Solids and Structures, 43, 1878–1907.CrossRefGoogle Scholar
  47. E. Kati. (1997). Volume-phase transition of N-isopropylacrylamide gels induced by hydrostatic pressure. Journal of Chemical Physics, 106, 3792–3797.Google Scholar
  48. S.J. Kim, S.J. Park, S.I. Kim. (2003a). Synthesis and characteristics of interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and poly(N-isopropylacrylamide). Reactive and Functional Polymers, 55, 61–67.Google Scholar
  49. S.J. Kim, G.Y. Yoon, Y.M. Lee, S.I. Kim. (2003b). Electrical sensitive behavior of poly(vinyl alcohol)/poly(diallyldimethylammonium chloride) IPN hydrogel. Sensors and Actuators B: Chemical, 88, 286–291.Google Scholar
  50. S.J. Kim, C.K. Lee, S.I. Kim. (2004a). Electrical/pH responsive properties of poly(2-acrylamido-2-methylpropane sulfonic acid)/hyaluronic acid hdyrogels. Journal of Applied Polymer Science, 92, 1731–1736.Google Scholar
  51. S.J. Kim, S.G. Yoon, S.M. Lee, S.H. Lee, S.I. Kim. (2004b). Electrical sensitivity behavior of a hydrogel composed of polymethacrylic acid/poly(Vinyl alcohol). Journal of Applied Polymer Science, 91, 3613–3617.Google Scholar
  52. A.K. Lele, M.V. Badiger, M.M. Hirve, R.A. Mashelkar. (1995). Thermodynamics of hydrogen-bonded polymer gel-solvent systems. Chemical Engineering Science, 50, 3535–3542.CrossRefGoogle Scholar
  53. A.K. Lele, I. Devotta, R.A. Mashelkar. (1997). Predictions of thermoreversible volume phase transitions in copolymer gels by lattice-fluid-hydrogen-bond theory. Journal of Chemical Physics, 106, 4768–4772.CrossRefGoogle Scholar
  54. H. Li, J. Chen, K.Y. Lam. (2004a). Multiphysical modelling and meshless simulation of electric-sensitive hydrogels. Journal of Polymer Science Part B: Polymer Physics, 42, 1514–1531.Google Scholar
  55. H. Li, T.Y. Ng, J.Q. Cheng, K.Y. Lam. (2003). Hermite-cloud: A novel true meshless method. Computational Mechanics, 33, 30–41.CrossRefGoogle Scholar
  56. Y. Li, T. Tanaka. (1990). Kinetics of swelling and shrinking of gels. Journal of Chemical Physics, 92, 1365–1371.CrossRefGoogle Scholar
  57. Y. Li, T. Tanaka. (1992). Phase transitions of gels. Annual Review of Material Science, 22, 243–276.CrossRefGoogle Scholar
  58. H. Li, Z. Yuan, K.Y. Lam, H.P. Lee, J. Chen, J. Hanes, J. Fu. (2004b). Model development and numerical simulation of electric-stimulus-responsive hydrogels subject to an externally applied electric field. Biosensors and Bioelectronics, 19, 1097–1107.Google Scholar
  59. R.M. Luo, H. Li, K.Y. Lam. (2008). Modeling and analysis of pH-electric-stimuliresponsive hydrogels. Journal of Biomaterials Science – Polymer Edition, 19, 1597–1610.Google Scholar
  60. S.R. Lustig, J.M. Caruthers, N.A. Peppas. (1992). Continuum thermodynamics and transport theory for polymer-fluid mixtures. Chemical Engineering Science, 47, 3037–3057.CrossRefGoogle Scholar
  61. L. Mao, Y. Hu, Y. Piao, X. Chen, W. Xian, D. Piao. (2005). Structure and character of artificial muscle model constructed from fibrous hydrogel. Current Applied Physics, 5, 426–428.CrossRefGoogle Scholar
  62. G. Maurer, J.M. Prausnitz. (1996). Thermodynamics of phase equilibrium for systems containing gels. Fluid Phase Equilibria, 115, 113–133.CrossRefGoogle Scholar
  63. R. Moerkerke, R. Koningsveld, H. Berghmans, K. Dusek, K. Solc. (1995). Phase transitions in swollen networks. Macromolecules, 28, 1103–1107.CrossRefGoogle Scholar
  64. V.C. Mow, S.C. Kuei, W.M. Lai, C.G. Armstrong. (1980). Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments. Journal of Biomechanical Engineering, 102, 73–84.CrossRefGoogle Scholar
  65. P.A. Netti, F. Travascio. (2003). Coupled macromolecular transport and gel mechanics: Poroviscoelastic approach. AIChE Journal, 49, 1580–1596.CrossRefGoogle Scholar
  66. D.A. Nield, A. Bejan. (1998). Convection in Porous Media, 2nd ed. New York: Springer Verlag.Google Scholar
  67. K. Nishizawa, T. Shirose, O. Itoh. (1981). Disposable Diaper, United States Patent 4269188.Google Scholar
  68. R.W. Ogden. (1997). Non-linear Elastic Deformations, New York: Dover publications.Google Scholar
  69. K.S. Oh, Y.C. Bae. (1998). Swelling behavior of submicron gel particles. Journal of Applied Polymer Science, 69, 109–114.CrossRefGoogle Scholar
  70. T. Okajima, I. Harada, K. Nishio, S. Hirotsu. (2002). Kinetics of volume phase transition in poly(N-isopropylacrylamide) gels. Journal of Chemical Physics, 116, 9068–9077.CrossRefGoogle Scholar
  71. E.D. Oliveira, A.F.S. Silva, R.F.S. Freitas. (2004). Contributions to the thermodynamics of polymer hydrogel systems. Polymer, 45, 1287–1293.CrossRefGoogle Scholar
  72. A. Onuki. (1989). Theory of pattern formation in gels: Surface folding in highly compressible elastic bodies. Physical Review A, 39, 5932–5948.CrossRefGoogle Scholar
  73. Y. Osada, J.P. Gong. (1993). Stimuli-responsive polymer gels and their application to chemomechanical systems. Progress in Polymer Science, 18, 187–226.CrossRefGoogle Scholar
  74. K. Otake, H. Inomata, M. Konno, S. Saito. (1989). A new model for the thermally induced volume phase transition of gels. Journal of Chemical Physics, 91, 1345–1350.CrossRefGoogle Scholar
  75. G.V. Pamuk. (2004). Controlling water dynamics in scots pine (pinus sylvestris L.) seeds before and during seedling emergence. Ph.D Thesis, Umeå University, Sweden.Google Scholar
  76. O. Pohl. (2004). Now, diaper technology takes on a desert, The New York Times, Science Desk, July 20.Google Scholar
  77. A.F. Prokop, S. Vaezy, M.L. Noble, P.J. Kaczkowski, R.W. Martin, L.A. Crum. (2003). Polyacrylamide gel as an acoustic coupling medium for focused ultrasound therapy. Ultrasound in Medicine & Biology, 20, 1351–1358.Google Scholar
  78. Y. Qiu, K.N. Park. (2001). Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 53, 321–339.CrossRefGoogle Scholar
  79. I. Roy, N. Gupta. (2003). Smart polymeric materials: Emerging biochemical applications. Chemistry and Biology, 10, 1161–1171.CrossRefGoogle Scholar
  80. E. Samson, J. Marchand, J.L. Robert, J.P. Bournazel. (1999). Modelling ion diffusion mechanisms in porous media. International Journal for Numerical Methods in Engineering, 46, 2043–2060.CrossRefGoogle Scholar
  81. M.S. Sanchez, M.M. Prada, J.L.G. Ribelles. (2004). Thermal transitions in PHEA hydrogels by thermomechanical analysis. A comparison with DSC data. European Polymer Journal, 40, 329–334.Google Scholar
  82. K. Sekimoto. (1991). Thermodynamics and hydrodynamics of chemical gels. Journal de Physique II (France), 1, 19–36.CrossRefGoogle Scholar
  83. K. Sekimoto, M. Doi. (1991). Dynamics of interface of gels undergoing volume phase transition. Journal de Physique II (France), 1, 1053–1066.CrossRefGoogle Scholar
  84. M. Shibayama, T. Tanaka. (1993). Volume Phase Transition and Related Phenomena of Polymer Gels. In: Responsive Gels: Volume Transitions I, Advances in Polymer Science Vol. 109, K. Dusek (Ed.) Berlin: Springer-Verlag, pp. 1–62.Google Scholar
  85. H. Shirota, N. Endo, K. Horie. (1998). Volume phase transition of polymer gel in water and heavy water. Chemical Physics, 238, 487–494.CrossRefGoogle Scholar
  86. J. Singh, M.E. Weber. (1996). Kinetics of one-dimensional gel swelling and collapse for large volume change. Chemical Engineering Science, 51, 4499–4508.CrossRefGoogle Scholar
  87. D. Snita, M. Paces, J. Lindner, J. Kosek, M. Marek. (2001). Nonlinear behaviour of simple ionic systems in hydrogel in an electric field. Faraday Discuss, 120, 53–66.CrossRefGoogle Scholar
  88. T. Tanaka, D.J. Fillmore. (1979). Kinetics of swelling of gels. Journal of Chemical Physics, 70, 51214–1218.Google Scholar
  89. T. Tanaka, D. Fillmore, S.T. Sun, I. Nishio, G. Swislow, A. Shah. (1980). Phase transition in ionic gels. Physical Review Letters, 45, 1636–1639.CrossRefGoogle Scholar
  90. T. Tanaka, L.O. Hocker, G.B. Benedek. (1973). Spectrum of light scattered from a viscoelastic gel. Journal of Chemical Physics, 59, 5151–5159.CrossRefGoogle Scholar
  91. R. Taylor, R. Krishna. (1993). Multicomponent Mass Transfer, John Wiley & Sons.Google Scholar
  92. M. Tokita, T. Tanaka. (1991). Friction coefficient of polymer networks of gels. Journal of Chemical Physics, 95, 4613–4619.CrossRefGoogle Scholar
  93. T. Wallmersperger, B. Kroplin, R.W. Gulch. (2004). Coupled chemo-electro-mechanical formulation for ionic polymer gels – numerical and experimental investigations. Mechanics of Materials, 36, 411–420.CrossRefGoogle Scholar
  94. C. Wang, 1Y. Li, Z. Hu. (1997). Swelling kinetics of polymer gels. Macromolecules, 30, 4727–4732.CrossRefGoogle Scholar
  95. J.A. Wesselingh, A.M. Bollen. (1997). Multicomponent diffusivities from the free volume theory. IChemE Journal Transactions, 75A, 590–602.CrossRefGoogle Scholar
  96. J.A. Wesselingh, R. Krishna. (2000). Mass Transfer in Multicomponent Mixtures, Delft: Delft University Press.Google Scholar
  97. S. Whitaker. (1999). The Method of Volume Averaging, Dordrecht: Kluwer.Google Scholar
  98. B.A. Wolf. (1984). Thermodynamic theory of flowing polymer solutions and its application to phase separation. Macromolecules, 17, 615–618.CrossRefGoogle Scholar
  99. C.W. Wolgemuth, A. Mogilner, G. Oster. (2004). The hydration dynamics of polyelectrolyte gels with applications to cell motility and drug delivery. European Biophysics Journal, 33, 146–158.CrossRefGoogle Scholar
  100. S. Wu, H. Li, J.P. Chen, K.Y. Lam. (2004). Model investigation of hydrogel volume transition. Macromolecular Theory and Simulations, 13, 13–29.CrossRefGoogle Scholar
  101. X.Z. Zhang, R.X. Zhuo. (2000a). Preparation of fast responsive, thermally sensitive poly(N-isopropylacrylamide) gel. European Polymer Journal, 36, 2301–2303.Google Scholar
  102. X.Z. Zhang, R.X. Zhuo. (2000b). Novel synthesis of temperature-sensitive poly(N-isopropylacrylamide) hydrogel with fast deswelling rate. European Polymer Journal, 36, 643–645.Google Scholar
  103. X. Zhou, Y.C. Hon, S. Sun, A.F.T. Mak. (2002). Numerical simulation of the steady-state deformation of a smart hydrogel under an external electric field. Smart Materials and Structures, 11, 459–467.CrossRefGoogle Scholar
  104. M. Zrínyi, A. Szilágyi, G. Filipcsei, J. Fehér, J. Szalma, G. Móczár. (2001). Smart gel-glass based on the responsive properties of polymer gels. Polymers for Advanced Technologies, 12, 501–505.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hua Li
    • 1
  1. 1.College of Engineering School of Mechanical & Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations