Skip to main content

Multi-Effect-Coupling Electric-Stimulus (MECe) Model for Electric-Sensitive Hydrogel

  • Chapter
  • First Online:
Smart Hydrogel Modelling
  • 1545 Accesses

Abstract

In this chapter, the two models previously published are reviewed first for the responsive hydrogels, which providing the basis for the present multi-effect-coupling electric-stimulus (MECe) model. It is followed by development of the MECe model, in which four important governing equations are formulated to characterize the diffusive ion concentrations, the electric potential, the interstitial fluid pressure and the deformation of hydrogel, respectively. The non-dimensional form of the MECe governing equations is then presented and the boundary and initial conditions are proposed accordingly. After validation of the MECe model by comparison with the experimental data published in open literature, the steady-state simulation is conducted for equilibrium analysis of the electric stimulus-responsive hydrogel and the transient simulation for kinetics analysis of the smart hydrogel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J.O’M. Bockris, B.E. Conway, E. Yeager (Eds.) (1983). Comprehensive Treatise of Electrochemistry, Vol. 6, Electrodics: Transport, New York: Plenum Press.

    Google Scholar 

  • J. Fei, Z. Zhang, L. Gu. (2002). Bending behavior of electroresponsive poly(vinyl alcohol) and poly(acrylic acid) semi-interpenetrating network hydrogel fibres under an electric stimulus. Polymer International, 51, 502–509.

    Article  CAS  Google Scholar 

  • M. Homma, Y. Seida, Y. Nakano. (2000). Evaluation of optimum condition for designing high-performance electro-driven polymer hydrogel systems. Journal of Applied Polymer Science, 75, 111–118.

    Article  CAS  Google Scholar 

  • M. Homma, Y. Seida, Y. Nakano. (2001). Effect of ions on the dynamic behavior of an electrodriven ionic polymer hydrogel membrane. Journal of Applied Polymer Science, 82, 76–80.

    Article  CAS  Google Scholar 

  • Y.C. Hon, M.W. Lu, W.M. Xue, X. Zhou. (1999). A new formulation and computation of the triphasic model for mechano-electrochemical mixtures. Computational Mechanics, 24, 155–165.

    Article  Google Scholar 

  • W.M. Lai, J.S. Hou, V.C. Mow. (1991). A triphasic theory for the swelling and deformation behaviors of articular cartilage. ASME Journal of Biomechanical Engineering, 113, 245–258.

    Article  CAS  Google Scholar 

  • H. Li, T.Y. Ng, J.Q. Cheng, K.Y. Lam. (2003). Hermite-cloud: A novel true meshless method. Computational Mechanics, 33, 30–41.

    Article  CAS  Google Scholar 

  • T. Shiga, T. Karauchi. (1990). Deformation of polyelectrolyte gels under the influence of electric field. Journal of Applied Polymer Science, 39, 2305–2320.

    Article  CAS  Google Scholar 

  • T. Tanaka, I. Nishio, S.T. Sun, N.S. Ueno. (1982). Collapse of gels in an electric field. Science, 218, 467–469.

    Article  CAS  Google Scholar 

  • S. Sun, A.F.T. Mak. (2001). The dynamical response of a hydrogel fiber to electrochemical stimulation. Journal of Polymer Science part B: Polymer Physics, 39, 236–246.

    Article  CAS  Google Scholar 

  • T. Wallmersperger, B. Kroplin, R.W. Gulch. (2004). Coupled chemo-electro-mechanical formulation for ionic polymer gels – numerical and experimental investigations. Mechanics of Materials, 36, 411–420.

    Article  Google Scholar 

  • X. Zhou, Y.C. Hon, S. Sun, A.F.T. Mak. (2002). Numerical simulation of the steady-state deformation of a smart hydrogel under an external electric field. Smart Materials and Structures, 11, 459–467.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, H. (2009). Multi-Effect-Coupling Electric-Stimulus (MECe) Model for Electric-Sensitive Hydrogel. In: Smart Hydrogel Modelling. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02368-2_3

Download citation

Publish with us

Policies and ethics