Advertisement

Multi-Effect-Coupling pH-Stimulus (MECpH) Model for pH-Sensitive Hydrogel

Chapter

Abstract

In general, the degree of swelling/shrinking of a smart hydrogel is dependent upon many effects, such as the ionizable group and polymeric network structure of the hydrogel and the characteristics of environmental solutions including the composition, pH and temperature, in which there are different interactions between mechanical, chemical and electrical fields.

Keywords

Fixed Charge Kirchhoff Stress Tensor Robinson Buffer PHEMA Hydrogel Smart Hydrogel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.H. Jo. (2000a). Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature, 404, 588–590.Google Scholar
  2. D.J. Beebe, J.S. Moore, Q. Yu, H. Liu, M.L. Kraft, B.H. Jo, C. Devadoss. (2000b). Microfluidic tectonics: A comprehensive construction platform for microfluidic systems. Proceedings of the National Academy of Sciences of the United States of America, 97, 13488–13493.Google Scholar
  3. J.O’M. Bockris, B.E. Conway, E. Yeager (Eds.) (1983). Comprehensive Treatise of Electrochemistry, Vol. 6, Electrodics: Transport, New York: Plenum Press.Google Scholar
  4. J.O.M. Bockris, K.N. Reddy-Amulya. (1998). Modern Electrochemistry: Ionics, 2nd edn. New York: Plenum Press.Google Scholar
  5. L. Brannon-Peppas, N.L. Peppas, (1991). Equilibrium swelling behavior of pH-sensitive hydrogels. Chemical Engineering Science, 46, 715–722.CrossRefGoogle Scholar
  6. H. Brondsted, J. Kopecek. (1992). pH-Sensitive Hydrogels: Characteristics and Potential in Drug Delivery. In: Polyelectrolyte Gels: Properties Preparation and Applications, ACS Symposium Series 480, R.S. Harland, R.K. Prud’homme (Eds.) Washington DC: American Chemical Society, pp. 285–304.CrossRefGoogle Scholar
  7. L.D. Carnay, I. Tasaki. (1971). Ion Exchange Properties and Excitability of the Squid Giant Axon. In: Biophysics and Physiology of Excitable Membranes, W.J. Adelman Jr. (Ed.) New York: Van Nostrand Reinhold Co, pp. 379–422.Google Scholar
  8. Y. Chu, P.P. Varanasi, M.J. McGlade, S. Varanasi. (1995). pH-induced swelling kinetics of polyelectrolyte hydrogels. Journal of Applied Polymer Science, 58, 2161–2176.CrossRefGoogle Scholar
  9. K. Cooper, E. Jakobsson, P. Wolynes. (1985). The Theory of ion transport through membrane channels. Progress in Biophysics and Molecular Biology, 46, 51–96.CrossRefGoogle Scholar
  10. E.L. Cussler. (1997). Diffusion Mass Transfer in Fluid System, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
  11. D. De Rossi, P. Parrini, P. Chiarelli, G. Buzzigoli. (1985). Electrically induced contractile phenomena in charged polymer networks: Preliminary study on the feasibility of muscle-like structures. Transactions of the American Society for Artificial Internal Organs, XXXI, 60–65.Google Scholar
  12. M. Doi, M. Matsumoto, Y. Hirose. (1992). Deformation of ionic polymer gels by electric fields. Macromolecules, 25, 5504–5511.CrossRefGoogle Scholar
  13. L. Dresner. (1972). Some remarks on the integration of extended Nernst–Planck equations in the hyperfiltration of multicomponent solution. Desalination, 10, 27–46.CrossRefGoogle Scholar
  14. R.S. Eisenberg. (1999). From structure to function in open ionic channel. Journal of Membrane Biology, 171, 1–24.CrossRefGoogle Scholar
  15. P.J. Flory. (1953). Principles of Polymer Chemistry, Ithaca, New York: Cornell University Press.Google Scholar
  16. A. Fragala, J. Enos, A. LaConti, J. Boyack. (1972). Electrochemical activation of a synthetic artificial muscle membrane. Electrochimica Acta, 17, 1507–1522.CrossRefGoogle Scholar
  17. S.H. Gehrke, E.L. Cussler. (1989). Mass transfer in pH-sensitive hydrogels. Chemical Engineering Science, 44, 559–566.CrossRefGoogle Scholar
  18. D. Gillespie, R.S. Eisenberg. (2001). Modified Donnan potentials for ion transport through biological ion channels. Physical Review E, 63, 061902.CrossRefGoogle Scholar
  19. D. Gillespie, R.S. Eisenberg. (2002). Physical descriptions of experimental selectivity measurements in ion channels. European Biophysics Journal, 31, 454–466.CrossRefGoogle Scholar
  20. D.E. Goldman. (1943). Potential, impedance and rectification in membranes. Journal of General Physiology, 27, 37–60.CrossRefGoogle Scholar
  21. D.E. Goldman. (1971). Excitability Models. In: Biophysics and Physiology of Excitable Membranes, W.J. Adelman Jr. (Ed.) New York: Van Nostrand Reinhold Co, pp. 337–358.Google Scholar
  22. P.E. Grimshaw. (1989). Electrical control of solute transport across polyelectrolyte membranes. Ph.D Thesis, Massachusetts Institute of Technology.Google Scholar
  23. P.E. Grimshaw, J.H. Nussbaum, A.J. Grodzinsky. (1990). Kinetics of electricity and chemically induced swelling in polyelectrolyte gels. Journal of Chemical Physics, 93, 4462–4472.CrossRefGoogle Scholar
  24. A.J. Grodzinsky. (1974). Electromechanics of deformable polyelectrolyte membranes. Sc.D Thesis, Massachusetts Institute of Technology.Google Scholar
  25. R.W. Gulch, J. Holdenried, A. Weible, T. Wallmersperger, B. Kroplin. (2000). Polyelectrolyte Gels in Electric Fields: A Theoretical and Experimental Approach. In: Smart Structures and Materials 2000: Electroactive Polymer Actuators and Devices, Proceedings of the SPIE 3987, Y. Bar-Cohen (Ed.) Bellingham, Washington: SPIE Press, pp. 193–202.Google Scholar
  26. L. Guldbrand, B. Jonsson, H. Wennerstrom, P. Linse. (1984). Electrical double layer forces: A Monte Carlo study. Journal of Chemical Physics, 80, 2221–2228.CrossRefGoogle Scholar
  27. F. Helfferich. (1962). Ion Exchange, New York: McGraw-Hill.Google Scholar
  28. A.L. Hodgkin, B. Katz. (1949). The effect of sodium ions on the electrical activity of the giant axon of the Squid. The Journal of Physiology, 108, 37–77.Google Scholar
  29. M. Homma, Y. Seida, Y. Nakano. (2000). Evaluation of optimum condition for designing high-performance electro-driven polymer hydrogel systems. Journal of Applied Polymer Science, 75, 111–118.CrossRefGoogle Scholar
  30. Y. Hwang, F. Helfferich. (1987). Generalized model for multispecies ion-exchange kinetics including fast reversible reactions. Reactive and Functional Polymers, 5, 237–253.Google Scholar
  31. B.D. Johnson, J.M. Bauer, D.J. Niedermaier, W.C. Crone, D.J. Beebe. (2004a). Experimental techniques for mechanical characterization of hydrogels at the microscale. Experimental Mechanics, 44, 21–28.Google Scholar
  32. B.D. Johnson, D.J. Beebe, W.C. Crone. (2004b). Effects of swelling on the mechanical properties of a pH-sensitive hydrogel for use in microfluidic devices. Materials Science and Engineering C: Biomimetic and Supramolecular Systems, 24, 575–581.Google Scholar
  33. B.D. Johnson, D.J. Niedermaier, W.C. Crone, J. Moorthy, D.J. Beebe. (2002). Mechanical properties of a pH sensitive hydrogel, Proceedings of the 2002 Annual Conference of Society for Experimental Mechanics, Milwaukee, Wisconsin.Google Scholar
  34. A. Katchalsky. (1949). Rapid swelling and deswelling of reversible gels of polymeric acids by ionization. Experientia, 5, 319–320.CrossRefGoogle Scholar
  35. A. Katchalsky, P.F. Curran. (1965). Nonequilibrium Thermodynamics in Biophysics, Massachusetts: Harvard University Press.Google Scholar
  36. M. Kato. (1995). Numerical analysis of the Nernst–Planck–Poisson system . Journal of Theoretical Biology, 177, 299–304.CrossRefGoogle Scholar
  37. M.G. Kurnikova, R.D. Coalson, P. Graft, A. Nitzan. (1999). A lattice relaxation algorithm for three-dimensional Poisson–Nernst–Planck theory with application to ion transport through the gramicidin a channel. Biophysical Journal, 76, 642–656.CrossRefGoogle Scholar
  38. W.M. Lai, J.S. Hou, V.C. Mow. (1991). A triphasic theory for the swelling and deformation behaviors of articular cartilage. ASME Journal of Biomechanical Engineering, 113, 245–258.CrossRefGoogle Scholar
  39. H. Li, T.Y. Ng, J.Q. Cheng, K.Y. Lam. (2003). Hermite-cloud: A novel true meshless method. Computational Mechanics, 33, 30–41.CrossRefGoogle Scholar
  40. D.R. Lide. (Ed.) (2002). CRC Handbook of Chemistry and Physics, 83rd edn. Boca Raton: CRC Press.Google Scholar
  41. A.M. Lowman, N.A. Peppas. (1999). Hydrogels. In: Encyclopedia of Controlled Drug Delivery, E. Mathiowitz (Ed.) New York: Wiley, pp. 397–418.Google Scholar
  42. A.D. MacGillivray. (1968). Nernst–Planck equation and the electroneutrality and Donnan equilibrium assumptions. Journal of Chemical Physics, 48, 2903–2907.CrossRefGoogle Scholar
  43. A.D. MacGillivray, D. Hare. (1969). Applicability of goldman’s constant field assumption to biological systems. Journal of Theoretical Biology, 25, 113–126.CrossRefGoogle Scholar
  44. J. Malmivuo, R. Plonsey. (1995). Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields, New York: Oxford University Press.Google Scholar
  45. L.E. Malvern. (1969). Introduction to the Mechanics of A Continuum Medium, Englewood Cliffs, New Jersey: Prentice-Hall.Google Scholar
  46. Y. Osada, J.P. Gong. (1993). Stimuli-responsive polymer gels and their application to chemomechanical systems. Progress in Polymer Science, 18, 187–226.CrossRefGoogle Scholar
  47. W.K. Panofsky, M. Phillips. (1964). Classical Electricity and Magnetism, 2nd edn. Reading, Massachusetts: Addison-Wesley.Google Scholar
  48. N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa. (2000). Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics, 50, 27–46.CrossRefGoogle Scholar
  49. A. Redondo, R. LeSar. (2004). Modelling and simulation of biomaterial. Annual Review of Materials Research, 34, 279–314.CrossRefGoogle Scholar
  50. J. Ricka, T. Tanaka. (1984). Swelling of ionic gels: Quantitative performance of the Donnan theory. Macromolecules, 17, 2916–2921.CrossRefGoogle Scholar
  51. B. Roux, T. Allen, S. Berneche, W. Im. (2004). Theoretical and computational models of biological ion channels. Quarterly Reviews of Biophysics, 37, 15–103.CrossRefGoogle Scholar
  52. I. Rubinstein. (1990). Electro-Diffusion of Ions SIAM Studies in Applied Mathematics, Philadelphia: SIAM.Google Scholar
  53. E. Samson, J. Marchand. (1999). Numerical solution of the extended Nernst–Planck model. Journal of Colloid and Interface Science, 215, 1–8.CrossRefGoogle Scholar
  54. E. Samson, J. Marchand, J.L. Robert, J.P. Bournazel. (1999). Modelling ion diffusion mechanisms in porous media. International Journal for Numerical Methods in Engineering, 46, 2043–2060.CrossRefGoogle Scholar
  55. S. Selberherr. (1984). Analysis and Simulation of Semiconductor Devices, New York: Springer.Google Scholar
  56. M. Shibayama, T. Tanaka. (1993). Volume Phase Transition and Related Phenomena of Polymer Gels. In: Responsive Gels: Volume Transitions I, Advances in Polymer Science Vol. 109, K. Dusek (Ed.) Berlin: Springer-Verlag, pp. 1–62.Google Scholar
  57. T. Shiga, Y. Hirose, A. Okada, T. Kurauchi. (1992a). Bending of poly(vinyl alcohol)-poly(sodium acrylate) composite hydrogel in electric fields. Journal of Applied Polymer Science, 44, 249–253.Google Scholar
  58. T. Shiga, Y. Hirose, A. Okada, T. Kurauchi. (1992b). Electric field-associated deformation of polyelectrolyte gel near a phrase transition point. Journal of Applied Polymer Science, 46, 635–640.Google Scholar
  59. R.A. Siegel. (1990). pH Sensitive Gels: Swelling Equilibria, Kinetics and Applications for Drug Delivery. In: Pulse and Self-Regulated Drug Delivery, J. Kost (Ed.) Boca Raton: CRC Press, pp. 129–155.Google Scholar
  60. R.A. Siegel, B.A. Firestone. (1988). pH-dependent equilibrium swelling properties of hydrophobic polyelectrolyte copolymer gels. Macromolecules, 21, 3254–3259.CrossRefGoogle Scholar
  61. R.A. Siegel, B.A. Firestone, J. Cornejo-Bravo, B. Schwarz. (1991). Hydrophobic Weak Polybasic Gels: Factors Controlling Swelling Equilibrium. In: Polymer Gels: Fundamental and Biomedical Applications, D. DeRossi, K. Kajiwara, Y. Osada, A. Yamauchi (Eds.) New York: Plenum Press, pp. 309–317.Google Scholar
  62. R.A. Sjodin. (1971). Ion Transport across Excitable Cell Membranes. In: Biophysics and Physiology of Excitable Membranes, W.J. Adelman Jr. (Ed.) New York: Van Nostrand Reinhold Co, pp. 96–124.Google Scholar
  63. A. Syganow, E. von Kitzing. (1999). The drift approximation solves the Poisson, Nernst–Planck, and continuum equation in the limit of large external voltages. European Biophysics Journal, 28, 393–414.CrossRefGoogle Scholar
  64. T. Tanaka, D. Fillmore, S.T. Sun, I. Nishio, G. Swislow, A. Shah. (1980). Phase transition in ionic gels. Physical Review Letters, 45, 1636–1639.CrossRefGoogle Scholar
  65. T. Teorell. (1953). Transport processes and electrical phenomena in ionic membranes. Progress in Biophysics & Molecular Biology, 3, 305–369.Google Scholar
  66. A. Townshend. Ed. (1995). Encyclopedia of Analytical Science, Vol. 1 (A-Che), London: Academic Press.Google Scholar
  67. T. Wallmersperger, B. Kroeplin. (2001). Modelling and Analysis of the Chemistry and Electromechanics. In: Electroactive Polymer Actuators as Artificial Muscles, Y. Bar-Cohen (Ed.) SPIE Press, pp. 285–307.Google Scholar
  68. H.H. Woodson, J.R. Melcher. (1968). Electromechanical Dynamics Part I: Discrete Systems, New York: John Wiley and Sons.Google Scholar
  69. Q. Yu, J.M. Bauer, J.S. Moore, D.J. Beebe. (2001). Responsive biomimetic hydrogel valve for microfluidics. Applied Physics Letters, 78, 2589–2591.CrossRefGoogle Scholar
  70. B. Zhao, J.S. Moore. (2001). Fast pH- and ionic strength-responsive hydrogels in microchannels. Langmuir, 17, 4758–4763.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hua Li
    • 1
  1. 1.College of Engineering School of Mechanical & Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations