Skip to main content

Multi-Effect-Coupling pH-Stimulus (MECpH) Model for pH-Sensitive Hydrogel

  • Chapter
  • First Online:
Smart Hydrogel Modelling

Abstract

In general, the degree of swelling/shrinking of a smart hydrogel is dependent upon many effects, such as the ionizable group and polymeric network structure of the hydrogel and the characteristics of environmental solutions including the composition, pH and temperature, in which there are different interactions between mechanical, chemical and electrical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.H. Jo. (2000a). Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature, 404, 588–590.

    Google Scholar 

  • D.J. Beebe, J.S. Moore, Q. Yu, H. Liu, M.L. Kraft, B.H. Jo, C. Devadoss. (2000b). Microfluidic tectonics: A comprehensive construction platform for microfluidic systems. Proceedings of the National Academy of Sciences of the United States of America, 97, 13488–13493.

    Google Scholar 

  • J.O’M. Bockris, B.E. Conway, E. Yeager (Eds.) (1983). Comprehensive Treatise of Electrochemistry, Vol. 6, Electrodics: Transport, New York: Plenum Press.

    Google Scholar 

  • J.O.M. Bockris, K.N. Reddy-Amulya. (1998). Modern Electrochemistry: Ionics, 2nd edn. New York: Plenum Press.

    Google Scholar 

  • L. Brannon-Peppas, N.L. Peppas, (1991). Equilibrium swelling behavior of pH-sensitive hydrogels. Chemical Engineering Science, 46, 715–722.

    Article  CAS  Google Scholar 

  • H. Brondsted, J. Kopecek. (1992). pH-Sensitive Hydrogels: Characteristics and Potential in Drug Delivery. In: Polyelectrolyte Gels: Properties Preparation and Applications, ACS Symposium Series 480, R.S. Harland, R.K. Prud’homme (Eds.) Washington DC: American Chemical Society, pp. 285–304.

    Chapter  Google Scholar 

  • L.D. Carnay, I. Tasaki. (1971). Ion Exchange Properties and Excitability of the Squid Giant Axon. In: Biophysics and Physiology of Excitable Membranes, W.J. Adelman Jr. (Ed.) New York: Van Nostrand Reinhold Co, pp. 379–422.

    Google Scholar 

  • Y. Chu, P.P. Varanasi, M.J. McGlade, S. Varanasi. (1995). pH-induced swelling kinetics of polyelectrolyte hydrogels. Journal of Applied Polymer Science, 58, 2161–2176.

    Article  CAS  Google Scholar 

  • K. Cooper, E. Jakobsson, P. Wolynes. (1985). The Theory of ion transport through membrane channels. Progress in Biophysics and Molecular Biology, 46, 51–96.

    Article  CAS  Google Scholar 

  • E.L. Cussler. (1997). Diffusion Mass Transfer in Fluid System, 2nd edn. Cambridge: Cambridge University Press.

    Google Scholar 

  • D. De Rossi, P. Parrini, P. Chiarelli, G. Buzzigoli. (1985). Electrically induced contractile phenomena in charged polymer networks: Preliminary study on the feasibility of muscle-like structures. Transactions of the American Society for Artificial Internal Organs, XXXI, 60–65.

    Google Scholar 

  • M. Doi, M. Matsumoto, Y. Hirose. (1992). Deformation of ionic polymer gels by electric fields. Macromolecules, 25, 5504–5511.

    Article  CAS  Google Scholar 

  • L. Dresner. (1972). Some remarks on the integration of extended Nernst–Planck equations in the hyperfiltration of multicomponent solution. Desalination, 10, 27–46.

    Article  CAS  Google Scholar 

  • R.S. Eisenberg. (1999). From structure to function in open ionic channel. Journal of Membrane Biology, 171, 1–24.

    Article  CAS  Google Scholar 

  • P.J. Flory. (1953). Principles of Polymer Chemistry, Ithaca, New York: Cornell University Press.

    Google Scholar 

  • A. Fragala, J. Enos, A. LaConti, J. Boyack. (1972). Electrochemical activation of a synthetic artificial muscle membrane. Electrochimica Acta, 17, 1507–1522.

    Article  CAS  Google Scholar 

  • S.H. Gehrke, E.L. Cussler. (1989). Mass transfer in pH-sensitive hydrogels. Chemical Engineering Science, 44, 559–566.

    Article  CAS  Google Scholar 

  • D. Gillespie, R.S. Eisenberg. (2001). Modified Donnan potentials for ion transport through biological ion channels. Physical Review E, 63, 061902.

    Article  CAS  Google Scholar 

  • D. Gillespie, R.S. Eisenberg. (2002). Physical descriptions of experimental selectivity measurements in ion channels. European Biophysics Journal, 31, 454–466.

    Article  CAS  Google Scholar 

  • D.E. Goldman. (1943). Potential, impedance and rectification in membranes. Journal of General Physiology, 27, 37–60.

    Article  CAS  Google Scholar 

  • D.E. Goldman. (1971). Excitability Models. In: Biophysics and Physiology of Excitable Membranes, W.J. Adelman Jr. (Ed.) New York: Van Nostrand Reinhold Co, pp. 337–358.

    Google Scholar 

  • P.E. Grimshaw. (1989). Electrical control of solute transport across polyelectrolyte membranes. Ph.D Thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • P.E. Grimshaw, J.H. Nussbaum, A.J. Grodzinsky. (1990). Kinetics of electricity and chemically induced swelling in polyelectrolyte gels. Journal of Chemical Physics, 93, 4462–4472.

    Article  CAS  Google Scholar 

  • A.J. Grodzinsky. (1974). Electromechanics of deformable polyelectrolyte membranes. Sc.D Thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • R.W. Gulch, J. Holdenried, A. Weible, T. Wallmersperger, B. Kroplin. (2000). Polyelectrolyte Gels in Electric Fields: A Theoretical and Experimental Approach. In: Smart Structures and Materials 2000: Electroactive Polymer Actuators and Devices, Proceedings of the SPIE 3987, Y. Bar-Cohen (Ed.) Bellingham, Washington: SPIE Press, pp. 193–202.

    Google Scholar 

  • L. Guldbrand, B. Jonsson, H. Wennerstrom, P. Linse. (1984). Electrical double layer forces: A Monte Carlo study. Journal of Chemical Physics, 80, 2221–2228.

    Article  CAS  Google Scholar 

  • F. Helfferich. (1962). Ion Exchange, New York: McGraw-Hill.

    Google Scholar 

  • A.L. Hodgkin, B. Katz. (1949). The effect of sodium ions on the electrical activity of the giant axon of the Squid. The Journal of Physiology, 108, 37–77.

    CAS  Google Scholar 

  • M. Homma, Y. Seida, Y. Nakano. (2000). Evaluation of optimum condition for designing high-performance electro-driven polymer hydrogel systems. Journal of Applied Polymer Science, 75, 111–118.

    Article  CAS  Google Scholar 

  • Y. Hwang, F. Helfferich. (1987). Generalized model for multispecies ion-exchange kinetics including fast reversible reactions. Reactive and Functional Polymers, 5, 237–253.

    CAS  Google Scholar 

  • B.D. Johnson, J.M. Bauer, D.J. Niedermaier, W.C. Crone, D.J. Beebe. (2004a). Experimental techniques for mechanical characterization of hydrogels at the microscale. Experimental Mechanics, 44, 21–28.

    Google Scholar 

  • B.D. Johnson, D.J. Beebe, W.C. Crone. (2004b). Effects of swelling on the mechanical properties of a pH-sensitive hydrogel for use in microfluidic devices. Materials Science and Engineering C: Biomimetic and Supramolecular Systems, 24, 575–581.

    Google Scholar 

  • B.D. Johnson, D.J. Niedermaier, W.C. Crone, J. Moorthy, D.J. Beebe. (2002). Mechanical properties of a pH sensitive hydrogel, Proceedings of the 2002 Annual Conference of Society for Experimental Mechanics, Milwaukee, Wisconsin.

    Google Scholar 

  • A. Katchalsky. (1949). Rapid swelling and deswelling of reversible gels of polymeric acids by ionization. Experientia, 5, 319–320.

    Article  CAS  Google Scholar 

  • A. Katchalsky, P.F. Curran. (1965). Nonequilibrium Thermodynamics in Biophysics, Massachusetts: Harvard University Press.

    Google Scholar 

  • M. Kato. (1995). Numerical analysis of the Nernst–Planck–Poisson system . Journal of Theoretical Biology, 177, 299–304.

    Article  Google Scholar 

  • M.G. Kurnikova, R.D. Coalson, P. Graft, A. Nitzan. (1999). A lattice relaxation algorithm for three-dimensional Poisson–Nernst–Planck theory with application to ion transport through the gramicidin a channel. Biophysical Journal, 76, 642–656.

    Article  CAS  Google Scholar 

  • W.M. Lai, J.S. Hou, V.C. Mow. (1991). A triphasic theory for the swelling and deformation behaviors of articular cartilage. ASME Journal of Biomechanical Engineering, 113, 245–258.

    Article  CAS  Google Scholar 

  • H. Li, T.Y. Ng, J.Q. Cheng, K.Y. Lam. (2003). Hermite-cloud: A novel true meshless method. Computational Mechanics, 33, 30–41.

    Article  CAS  Google Scholar 

  • D.R. Lide. (Ed.) (2002). CRC Handbook of Chemistry and Physics, 83rd edn. Boca Raton: CRC Press.

    Google Scholar 

  • A.M. Lowman, N.A. Peppas. (1999). Hydrogels. In: Encyclopedia of Controlled Drug Delivery, E. Mathiowitz (Ed.) New York: Wiley, pp. 397–418.

    Google Scholar 

  • A.D. MacGillivray. (1968). Nernst–Planck equation and the electroneutrality and Donnan equilibrium assumptions. Journal of Chemical Physics, 48, 2903–2907.

    Article  CAS  Google Scholar 

  • A.D. MacGillivray, D. Hare. (1969). Applicability of goldman’s constant field assumption to biological systems. Journal of Theoretical Biology, 25, 113–126.

    Article  CAS  Google Scholar 

  • J. Malmivuo, R. Plonsey. (1995). Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields, New York: Oxford University Press.

    Google Scholar 

  • L.E. Malvern. (1969). Introduction to the Mechanics of A Continuum Medium, Englewood Cliffs, New Jersey: Prentice-Hall.

    Google Scholar 

  • Y. Osada, J.P. Gong. (1993). Stimuli-responsive polymer gels and their application to chemomechanical systems. Progress in Polymer Science, 18, 187–226.

    Article  CAS  Google Scholar 

  • W.K. Panofsky, M. Phillips. (1964). Classical Electricity and Magnetism, 2nd edn. Reading, Massachusetts: Addison-Wesley.

    Google Scholar 

  • N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa. (2000). Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics, 50, 27–46.

    Article  CAS  Google Scholar 

  • A. Redondo, R. LeSar. (2004). Modelling and simulation of biomaterial. Annual Review of Materials Research, 34, 279–314.

    Article  CAS  Google Scholar 

  • J. Ricka, T. Tanaka. (1984). Swelling of ionic gels: Quantitative performance of the Donnan theory. Macromolecules, 17, 2916–2921.

    Article  CAS  Google Scholar 

  • B. Roux, T. Allen, S. Berneche, W. Im. (2004). Theoretical and computational models of biological ion channels. Quarterly Reviews of Biophysics, 37, 15–103.

    Article  CAS  Google Scholar 

  • I. Rubinstein. (1990). Electro-Diffusion of Ions SIAM Studies in Applied Mathematics, Philadelphia: SIAM.

    Google Scholar 

  • E. Samson, J. Marchand. (1999). Numerical solution of the extended Nernst–Planck model. Journal of Colloid and Interface Science, 215, 1–8.

    Article  CAS  Google Scholar 

  • E. Samson, J. Marchand, J.L. Robert, J.P. Bournazel. (1999). Modelling ion diffusion mechanisms in porous media. International Journal for Numerical Methods in Engineering, 46, 2043–2060.

    Article  Google Scholar 

  • S. Selberherr. (1984). Analysis and Simulation of Semiconductor Devices, New York: Springer.

    Google Scholar 

  • M. Shibayama, T. Tanaka. (1993). Volume Phase Transition and Related Phenomena of Polymer Gels. In: Responsive Gels: Volume Transitions I, Advances in Polymer Science Vol. 109, K. Dusek (Ed.) Berlin: Springer-Verlag, pp. 1–62.

    Google Scholar 

  • T. Shiga, Y. Hirose, A. Okada, T. Kurauchi. (1992a). Bending of poly(vinyl alcohol)-poly(sodium acrylate) composite hydrogel in electric fields. Journal of Applied Polymer Science, 44, 249–253.

    Google Scholar 

  • T. Shiga, Y. Hirose, A. Okada, T. Kurauchi. (1992b). Electric field-associated deformation of polyelectrolyte gel near a phrase transition point. Journal of Applied Polymer Science, 46, 635–640.

    Google Scholar 

  • R.A. Siegel. (1990). pH Sensitive Gels: Swelling Equilibria, Kinetics and Applications for Drug Delivery. In: Pulse and Self-Regulated Drug Delivery, J. Kost (Ed.) Boca Raton: CRC Press, pp. 129–155.

    Google Scholar 

  • R.A. Siegel, B.A. Firestone. (1988). pH-dependent equilibrium swelling properties of hydrophobic polyelectrolyte copolymer gels. Macromolecules, 21, 3254–3259.

    Article  CAS  Google Scholar 

  • R.A. Siegel, B.A. Firestone, J. Cornejo-Bravo, B. Schwarz. (1991). Hydrophobic Weak Polybasic Gels: Factors Controlling Swelling Equilibrium. In: Polymer Gels: Fundamental and Biomedical Applications, D. DeRossi, K. Kajiwara, Y. Osada, A. Yamauchi (Eds.) New York: Plenum Press, pp. 309–317.

    Google Scholar 

  • R.A. Sjodin. (1971). Ion Transport across Excitable Cell Membranes. In: Biophysics and Physiology of Excitable Membranes, W.J. Adelman Jr. (Ed.) New York: Van Nostrand Reinhold Co, pp. 96–124.

    Google Scholar 

  • A. Syganow, E. von Kitzing. (1999). The drift approximation solves the Poisson, Nernst–Planck, and continuum equation in the limit of large external voltages. European Biophysics Journal, 28, 393–414.

    Article  Google Scholar 

  • T. Tanaka, D. Fillmore, S.T. Sun, I. Nishio, G. Swislow, A. Shah. (1980). Phase transition in ionic gels. Physical Review Letters, 45, 1636–1639.

    Article  CAS  Google Scholar 

  • T. Teorell. (1953). Transport processes and electrical phenomena in ionic membranes. Progress in Biophysics & Molecular Biology, 3, 305–369.

    CAS  Google Scholar 

  • A. Townshend. Ed. (1995). Encyclopedia of Analytical Science, Vol. 1 (A-Che), London: Academic Press.

    Google Scholar 

  • T. Wallmersperger, B. Kroeplin. (2001). Modelling and Analysis of the Chemistry and Electromechanics. In: Electroactive Polymer Actuators as Artificial Muscles, Y. Bar-Cohen (Ed.) SPIE Press, pp. 285–307.

    Google Scholar 

  • H.H. Woodson, J.R. Melcher. (1968). Electromechanical Dynamics Part I: Discrete Systems, New York: John Wiley and Sons.

    Google Scholar 

  • Q. Yu, J.M. Bauer, J.S. Moore, D.J. Beebe. (2001). Responsive biomimetic hydrogel valve for microfluidics. Applied Physics Letters, 78, 2589–2591.

    Article  CAS  Google Scholar 

  • B. Zhao, J.S. Moore. (2001). Fast pH- and ionic strength-responsive hydrogels in microchannels. Langmuir, 17, 4758–4763.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, H. (2009). Multi-Effect-Coupling pH-Stimulus (MECpH) Model for pH-Sensitive Hydrogel. In: Smart Hydrogel Modelling. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02368-2_2

Download citation

Publish with us

Policies and ethics