Skip to main content

Introduction

  • Chapter
  • First Online:
Smart Hydrogel Modelling
  • 1845 Accesses

Abstract

Hydrogel is a form of materials generally constructed by hydrophilic multiphase polymer mixture that may exhibit both solid-like and liquid-like properties. Its structural framework is formed from three-dimensional networks of randomly crosslinked polymeric chains that embody three different phases, namely solid polymer network matrix, interstitial water or biological fluid and ion species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • E.C. Achilleos, K.N. Christodoulou, I.G. Kevrekidis. (2001). A transport model for swelling of polyelectrolyte gels in simple and complex geometries. Computational and Theoretical Polymer Science, 11, 63–80.

    Article  CAS  Google Scholar 

  • E.C. Achilleos, R.K. Prud’homme, K.N. Christodoulou, K.R. Gee, I.G. Kevrekidis. (2000). Dynamic deformation visualization in swelling of polymer gels. Chemical Engineering Science, 55, 3335–3340.

    Article  CAS  Google Scholar 

  • S. Alsoy, J.L. Duda. (2002). Influence of swelling and diffusion-induced convection on polymer sorption processes. AIChE Journal, 48, 1849–1855.

    Article  CAS  Google Scholar 

  • C. Alvarez-Lorenzo, A. Concheiro. (2002). Reversible adsorption by a pH- and temperature-sensitive acrylic hydrogel. Journal of Controlled Release, 80, 247–257.

    Article  CAS  Google Scholar 

  • M. Annaka, Y. Amo, S. Sasaki, Y. Tominaga, K. Motokawa, T. Nakahira. (2002). Salt effect on volume phase transition of a gel. Physical Review E, 65, 031805-(8).

    Article  CAS  Google Scholar 

  • M. Annaka, M. Tokita, T. Tanaka, S. Tanaka, T. Nakahira. (2000). The gel that memorizes phases. The Journal of Physical Chemistry, 112, 471–477.

    Article  CAS  Google Scholar 

  • G. Astarita. (1989). Heat and mass transfer in solid polymer system. In: Transport Phenomena in Polymeric Systems, R.A. Mashelkar, A.S. Mujumdar, R. Kamal (Eds.) New York: Wiley, pp. 339–351.

    Google Scholar 

  • A.M. Atta. (2002). Swelling behaviors of polyelectrolyte hydrogels containing sulfonate groups. Polymers for Advanced Technologies, 13, 567–576.

    Article  CAS  Google Scholar 

  • E.M. Aydt, R. Hentschke. (2000). Swelling of a model network: A Gibbs-ensemble molecular dynamics study. Journal of Chemical Physics, 112, 5480–5487.

    Article  CAS  Google Scholar 

  • S.K. Bajpai. (2000). Swelling-deswelling behavior of poly(acrylamide-co-maleic acid) hydrogels. Journal of Applied Polymer Science, 80, 2782–2789.

    Article  Google Scholar 

  • A.K. Bajpai, A. Giri. (2002). Swelling dynamics of a macromolecular hydrophilic network and evaluation of its potential for controlled release of agrochemicals. Reactive and Functional Polymers, 53, 125–141.

    Article  CAS  Google Scholar 

  • A.K. Bajpai, M. Shrivastava. (2000). Dynamic swelling behavior of polyacrylamide based three component hydrogels. Journal of Macromolecular Science: Pure and Applied Chemistry, A37, 1069–1088.

    Article  Google Scholar 

  • A.K. Bajpai, M. Shrivastava. (2001). Water sorption dynamics of hydrophobic, ionizable copolymer gels. Journal of Scientific and Industrial Research India, 60, 131–140.

    CAS  Google Scholar 

  • A.K. Bajpai, M. Shrivastava. (2002a). Enhanced water sorption of a semi-interpenetrating polymer network (IPN) of poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(ethylene glycol) (PEG). Journal of Macromolecular Science: Pure and Applied Chemistry, A39, 1069–1088.

    Google Scholar 

  • A.K. Bajpai, M. Shrivastava. (2002b). Water sorption dynamics of a binary copolymeric hydrogel of a-hydroxyethyl methacrylate (HEMA). Journal of Biomaterials Science – Polymer Edition, 13, 237–256.

    Google Scholar 

  • A.K. Bajpai, M. Shrivastava. (2002c). Swelling kinetics of a hydrogel of poly(ethylene glycol) and poly(acrylamide-co-styrene). Journal of Applied Polymer Science, 85, 1419–1428.

    Article  CAS  Google Scholar 

  • B. Barriere, L. Leibler. (2003). Kinetics of solvent absorption and permeation through a highly swellable elastomeric network. Journal of Polymer Science Part B: Polymer Physics, 41, 166–182.

    Article  CAS  Google Scholar 

  • A.R. Berens, H.B. Hopfenberg. (1978). Diffusion and relaxation in glassy polymer powders: 2. separation of diffusion and relaxation parameters. Polymer, 19, 489–496.

    Article  CAS  Google Scholar 

  • J.P. Boisvert, A. Malgat, I. Pochard, C. Daneault. (2002). Influence of the counter-ion on the effective charge of polyacrylic acid in dilute condition. Polymer, 43, 141–148.

    Article  CAS  Google Scholar 

  • P. Bouillot, B.A. Vincent. (2000). Comparison of the swelling behaviour of copolymer and interpenetrating network microgel particles. Colloid and Polymer Science, 278, 74–79.

    Article  CAS  Google Scholar 

  • F. Castelli, G. Pitarresi, G. Giammona. (2000). Influence of different parameters on drug release from hydrogel systems to a biomembrane model. Evaluation by differential scanning calorimetry technique. Biomaterials, 21, 821–833.

    Article  CAS  Google Scholar 

  • T. Caykara, U. Bozkaya, O. Kantoglu. (2003). Network structure and swelling behavior of poly(acrylamide/crotonic acid) hydrogels in aqueous salt solution. Journal of Polymer Science Part B: Polymer Physics, 41, 1656–1664.

    Article  CAS  Google Scholar 

  • T. Caykara, C. Ozyurek, O. Kantoglu, O. Guven. (2000). Equilibrium swelling behavior of pH- and temperature-sensitive poly(N-vinyl 2-pyrrolidone-g-citric acid) polyelectrolyte hydrogels. Journal of Polymer Science Part B: Polymer Physics, 38, 2063–2071.

    Article  CAS  Google Scholar 

  • A.N. Chatterjee, Q. Yu, J.S. Moore, N.R. Aluru. (2003). Mathematical modeling and simulation of dissolvable hydrogels. Journal of Aerospace Engineering, 16, 55–64.

    Article  Google Scholar 

  • J. Chen, K. Park. (2000). Synthesis of fast-swelling, superporous sucrose hydrogels. Carbohydrate Polymers, 41, 259–268.

    Article  CAS  Google Scholar 

  • Y. Chen, M. Yi. (2001). Swelling kinetics and stimuli-responsiveness of poly(DMAEMA) hydrogels prepared by UV-irradiation. Radiation Physics and Chemistry, 61, 65–68.

    Article  Google Scholar 

  • H.C. Chiu, A.T. Wu, Y.F. Lin. (2001). Synthesis and characterization of acrylic acidcontaining dextran hydrogels. Polymer, 42, 1471–1479.

    Article  CAS  Google Scholar 

  • H.C. Chiu, Y.F. Lin, Y.H. Hsu. (2002a). Effects of acrylic acid on preparation and swelling properties of pH-sensitive dextran hydrogels. Biomaterials, 23, 1103–1112.

    Google Scholar 

  • H.C. Chiu, Y.F. Lin, S.H. Hung. (2002b). Equilibrium swelling of copolymerized acrylic acid-methacrylated dextran networks: Effects of ph and neutral salt. Macromolecules, 35, 5235–5242.

    Google Scholar 

  • C.S. Cho, Y.I. Jeong, S.K. Kim, J.W. Nah, M. Kubota, T. Komoto. (2000). Thermoplastic hydrogel based on hexablock copolymer composed of poly(-benzyl -glutamate) and poly(ethylene oxide). Polymer, 41, 5185–5193.

    Article  CAS  Google Scholar 

  • K.F. Chou, C.C. Han, S. Lee. (2000). Water transport in 2-hydroxyethyl methacrylate copolymer irradiated by γ rays in air and related phenomena. Journal of Polymer Science Part B: Polymer Physics, 38, 659–671.

    Article  CAS  Google Scholar 

  • W.Y. Chuang, T.H. Young, D.M. Wang, R.L. Luo, Y.M. Sun. (2000). Swelling behavior of hydrophobic polymers in water ethanol mixtures. Polymer, 41, 8339–8347.

    Article  CAS  Google Scholar 

  • R.O.R. Costa, R.F.S. Freitas. (2002). Phase behavior of poly(N-isopropylacrylamide) in binary aqueous solutions. Polymer, 43, 5879–5885.

    Article  CAS  Google Scholar 

  • A.M.A. Da Costa, A.M. Amado. (2000). Molecular interactions in polyacrylamide/lithium perchlorate hydrogel composites. Polymer, 41, 5361–5365.

    Article  Google Scholar 

  • D. Dibbern-brunelli, T.D.Z. Atvars. (2000). Thermal transitions of poly(vinyl alcohol) hydrogel sensed by a fluorescent probe. Journal of Applied Polymer Science, 76, 815–824.

    Article  Google Scholar 

  • S. Ji, J. Ding. (2002). The wetting process of a dry polymeric hydrogel. Polymer Journal, 34, 267–270.

    Article  CAS  Google Scholar 

  • D. Dhara, P.R. Chatterji. (2000). Phase transition in linear and cross-linked poly(N-isopropylacrylamide) in water: Effect of various types of additives. Journal of Macromolecular Science, Part C: Polymer Reviews, C40, 51–68.

    CAS  Google Scholar 

  • E. Diez-Pena, I. Quijada-Garrido, J.M. Barrales-Rienda. (2002). On the water swelling behaviour of poly(N-isopropylacrylamide) [P(N-iPAAm)] poly(methacrylic acid) [P(MAA)] their random copolymers and sequential interpenetrating polymer networks (IPNs). Polymer, 43, 4341–4348.

    Article  CAS  Google Scholar 

  • S. Durmaz, O. Okay. (2000). Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-based hydrogels synthesis and characterization. Polymer, 41, 3693–3704.

    Article  CAS  Google Scholar 

  • M. Ebara, T. Aoyagi, K. Sakai, T. Okano. (2001). The incorporation of carboxylate groups into temperature-responsive poly(N-isopropylacrylamide)-based hydrogels promotes rapid gel shrinking. Journal of Polymer Science Part A: Polymer Chemistry, 39, 335–343.

    Article  CAS  Google Scholar 

  • G.M. Eichenbaum, P.K. Kiser, D. Shah, W.P. Meuer, D. Needham, S.A. Simon. (2000). Alkali earth metal binding properties of ionic microgels. Macromolecules, 33, 4087–4093.

    Article  CAS  Google Scholar 

  • D.J. Enscore, H.B. Hopfenberg, V.T. Stannett. (1977). Effect of particle size on the mechanism controlling n-hexane sorption in glassy polystyrene microspheres. Polymer, 18, 793–800.

    Article  CAS  Google Scholar 

  • B. Erman, P.J. Flory. (1986). Critical phenomena and transitions in swollen polymer networks and in linear macromolecules. Macromolecules, 19, 2342–2353.

    Article  CAS  Google Scholar 

  • G. Evmenenko, T. Budtova. (2000). Structure changes in hydrogels immersed in a linear polymer solution studied by SANS. Polymer, 41, 4943–4947.

    Article  CAS  Google Scholar 

  • J. Fei, Z. Zhang, L. Gu. (2002). Bending behavior of electroresponsive poly(vinyl alcohol) and poly(acrylic acid) semi-interpenetrating network hydrogel fibres under an electric stimulus. Polymer International, 51, 502–509.

    Article  CAS  Google Scholar 

  • F. Fergg, F.J. Keil. (2001). Diffusion and reactions of multicomponent electrolytes in poly(vinyl alcohol) hydrogels –– modeling and experiment. Chemical Engineering Science, 56, 1305–1315.

    CAS  Google Scholar 

  • L. Ferreira, M.M. Vidal, M.H. Gil. (2000). Evaluation of poly(2-hydroxyethyl methacrylate) gels as drug delivery systems at different pH values. International Journal of Pharmaceutics, 194, 169–180.

    Article  CAS  Google Scholar 

  • P.J. Flory. (1953). Principles of Polymer Chemistry, Ithaca, New York: Cornell University Press.

    Google Scholar 

  • A. Fomenko, Z. Sedlakova, J. Plestil, M. Ilavsky. (2002). Phase transition in swollen gels: Part 32. Temperature transition in charged poly(N-isopropylmethacrylamide) hydrogels in water and aqueous NaCl solutions. Physical Chemistry Chemical Physics, 4, 4360–4367.

    Article  CAS  Google Scholar 

  • M.W.C.P. Franse, K. te Nijenhuis. (2000). Crosslinking index, molecular weight distribution and rubber equilibrium shear modulus during polyfunctional crosslinking of existing polymer. Part 5. Primary polymer with a discrete distribution of the molecular weight. Journal of Molecular Structure, 554, 1–10.

    Article  CAS  Google Scholar 

  • H. Furukawa. (2000). Effect of varying preparing-concentration on the equilibrium swelling of polyacrylamide gels. Journal of Molecular Structure, 554, 11–19.

    Article  CAS  Google Scholar 

  • L.H. Gan, G.R. Deen, X.J. Loh, X.Y. Gan. (2001). New stimuli-responsive copolymers of N-acryloyl-N’-alkyl piperazine and methyl methacrylate and their hydrogels. Polymer, 42, 65–69.

    Article  CAS  Google Scholar 

  • G. Gates, J.P. Harmon, J. Ors, P. Benz. (2003). 2, 3-dihydroxypropyl methacrylate and 2-hydroxyethyl methacrylate hydrogels: Gel structure and transport properties. Polymer, 44, 215–222.

    Article  CAS  Google Scholar 

  • A.J. Galli, W.H. Brumage. (1983). The freely jointed chain in expanded form. Journal of Chemical Physics, 79, 2411.

    Article  CAS  Google Scholar 

  • R.A. Gemeinhart, J. Chen, H. Park, K. Park. (2000). pH-Sensitivity of fast responsive superporous hydrogels. Journal of Biomaterials Science, Polymer Edition, 11, 1371–1380.

    Article  CAS  Google Scholar 

  • P.E. Grimshaw, J.H. Nussbaum, A.J. Grodzinsky. (1990). Kinetics of electricity and chemically induced swelling in polyelectrolyte gels. Journal of Chemical Physics, 93, 4462–4472.

    Article  CAS  Google Scholar 

  • C.M. Hansen. (2000). Hansen Solubility Parameters: A User’s Handbook, Boca Raton: CRC Press.

    Google Scholar 

  • J.P. Harmon, S. Lee, J.C.M. Li. (1987). Methanol treatment in PMMA: the effect of mechanical deformation. Journal of Polymer Science Part A: Polymer Chemistry, 25, 3215–3229.

    Article  CAS  Google Scholar 

  • M.M. Hassan, C.J. Durning. (1999). Effects of polymer molecular weight and temperature on case II transport. Journal of Polymer Science Part B: Polymer Physics, 37, 3159–3171.

    Article  CAS  Google Scholar 

  • D.J.T. Hill, N.G. Moss, P.J. Pomery, A.K. Whittaker. (2000). Copolymer hydrogels of 2-hydroxyethyl methacrylate with n-butyl methacrylate and cyclohexyl methacrylate synthesis characterization and uptake of water. Polymer, 41, 1287–1296.

    Article  CAS  Google Scholar 

  • A. Hiroki, Y. Maekawa, M. Yoshida, K. Kubota, R. Katakai. (2001). Volume phase transitions of poly(acryloyl-L-proline methyl ester) gels in response to water-alcohol composition. Polymer, 42, 1863–1867.

    Article  CAS  Google Scholar 

  • Y.P. Hong, Y.C. Bae. (2002). Phase behaviors of partially ionized hydrogels in aqueous salt solutions: Applicability of the modified double-lattice model. Journal of Polymer Science Part B: Polymer Physics, 40, 2333–2338.

    Article  CAS  Google Scholar 

  • W. Hong, X. Zhao, J. Zhou, Z. Suo. (2008). A theory of coupled diffusion and large deformation in polymeric gels, Journal of the Mechanics and Physics of Solids, 56, 1779–1793.

    Article  CAS  Google Scholar 

  • Y. Huang, I. Szleifer, N.A. Peppas. (2002). A molecular theory of polymer gels. Macromolecules, 35, 1373–1380.

    Article  CAS  Google Scholar 

  • A. Huther, B. Schafer, X. Xu, G. Maurer. (2002). Phase equilibria of hydrogel systems. Physical Chemistry Chemical Physics, 4, 835–844.

    Article  CAS  Google Scholar 

  • A. Ikehat, H. Ushiki. (2002). Effect of salt on the elastic modulus of poly(N-isopropylacrylamide) gels. Polymer, 43, 2089–2094.

    Article  Google Scholar 

  • M. Ilavsky, G. Mamytbekov, L. Hanykova, K. Dusek. (2002). Phase transition in swollen gels: 31. Swelling and mechanical behaviour of interpenetrating networks composed of poly(1-vinyl-2-pyrrolidone) and polyacrylamide in water/acetone mixtures. European Polymer Journal, 38, 875–883.

    Article  CAS  Google Scholar 

  • K. Ito, Y. Ujihira, T. Yamashita, K. Horie. (2000). Temperature dependence of free volume of polyacrylamide gels studied by positron lifetime measurements. Radiation Physics and Chemistry, 58, 521–524.

    Article  CAS  Google Scholar 

  • E. Jabbari, S. Nozari. (2000). Swelling behavior of acrylic acid hydrogels prepared by γ-radiation crosslinking of polyacrylic acid in aqueous solution. European Polymer Journal, 36, 2685–2692.

    Article  CAS  Google Scholar 

  • B.D. Johnson, D.J. Niedermaier, W.C. Crone, J. Moorthy, D.J. Beebe. (2002). Mechanical properties of a pH sensitive hydrogel, Proceedings of the 2002 Annual Conference of Society for Experimental Mechanics, Milwaukee, Wisconsin.

    Google Scholar 

  • E. Karadag, D. Saraydin. (2002). Swelling of superabsorbent acrylamide/sodium acrylate hydrogels prepared using multifunctional crosslinkers. Turkish Journal of Chemistry, 26, 863–875.

    CAS  Google Scholar 

  • I. Katime, E.D. de Apodaca. (2000). Acrylic acid/methyl methacrylate hydrogels. I. Effect of composition on mechanical and thermodynamic properties. Journal of Macromolecular Science: Pure and Applied Chemistry, A37, 307–321.

    Article  CAS  Google Scholar 

  • I. Katime, E. Rodriguez. (2001). Absorption of metal ions and swelling properties of poly(acrylic acid-co-itaconic acid) hydrogels. Journal of Macromolecular Science: Pure and Applied Chemistry, A38, 543–558.

    Article  CAS  Google Scholar 

  • N.R. Kenkare, C.K. Hall, S.A. Khan. (2000). Theory and simulation of the swelling of polymer gels. Journal of Physical Chemistry, 113, 404–418.

    Article  CAS  Google Scholar 

  • M.N. Khalid, F. Agnely, N. Yagoubi, J.L. Grossiord, G. Couarraze. (2002). Water state characterization, swelling behavior, thermal and mechanical properties of chitosan based networks. European Journal of Pharmaceutical Sciences, 15, 425–432.

    Article  CAS  Google Scholar 

  • A.R. Khokhlov, E. Yu. Kramarenko. (1994). Polyelectrolyte/Ionomer behavior in polymer gel collapse. Macromolecular Theory and Simulations, 3, 45–59.

    Article  CAS  Google Scholar 

  • S.J. Kim, S.J. Park, I.Y. Kim, M.S. Shin, S.I. Kim. (2002). Electric stimuli responses to poly(vinyl alcohol)/chitosan interpenetrating polymer network hydrogel in NaCl solutions. Journal of Applied Polymer Science, 86, 2285–2289.

    Article  CAS  Google Scholar 

  • S.J. Kim, S.J. Park, S.I. Kim. (2003a). Synthesis and characteristics of interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and poly(N-isopropylacrylamide). Reactive and Functional Polymers, 55, 61–67.

    Google Scholar 

  • B. Kim, N.A. Peppas. (2002). Complexation phenomena in pH-responsive copolymer networks with pendent saccharides. Macromolecules, 35, 9545–9550.

    Article  CAS  Google Scholar 

  • S.J. Kim, G.Y. Yoon, Y.M. Lee, S.I. Kim. (2003b). Electrical sensitive behavior of poly(vinyl alcohol)/poly(diallyldimethylammonium chloride) IPN hydrogel. Sensors and Actuators B: Chemical, 88, 286–291.

    Google Scholar 

  • J. Kovac. (1978). Modified Gaussian model for rubber elasticity. Macromolecules, 11, 362–365.

    Article  CAS  Google Scholar 

  • E. Yu. Kramarenko, A.R. Khokhlov, K. Yoshikawa. (2000). A three-state model for counterions in a dilute solution of weakly charged polyelectrolytes. Macromolecular Theory and Simulations, 9, 249–256.

    Article  Google Scholar 

  • K.Y. Lee, K.H. Bouhadir, D.J. Mooney. (2000). Degradation behavior of covalently cross-linked poly(aldehyde guluronate) hydrogels. Macromolecules, 33, 97–101.

    Article  CAS  Google Scholar 

  • W.F. Lee, Y.J. Chen. (2001). Studies on preparation and swelling properties of the N-isopropylacrylamide/chitosan semi-IPN and IPN hydrogels. Journal of Applied Polymer Science, 82, 2487–2496.

    Article  CAS  Google Scholar 

  • B.C. Lee, R.P. Danner. (1996). Application of the group-contribution lattice-fluid equation of state to random copolymer-solvent systems, Fluid Phase Equilibria, 117, 33–39.

    Article  CAS  Google Scholar 

  • W.F. Lee, Y.H. Lin. (2001). pH-reversible hydrogels. IV. Swelling behavior of the 2-hydroxyethyl methacrylate-co-acrylic acid-co-sodium acrylate copolymeric hydrogels. Journal of Applied Polymer Science, 81, 1360–1371.

    Article  CAS  Google Scholar 

  • J. Lee, C.W. Marcosko, D.W. Urry. (2001). Phase transition and elasticity of protein-based hydrogels. Journal of Biomaterials Science – Polymer Edition, 12, 229–242.

    Article  Google Scholar 

  • W.F. Lee, P.L. Yeh. (2000). Thermoreversible hydrogels. IX. Swelling behaviors of thermosensitive hydrogels copolymerized by N-isopropylacrylamide with 1-vinyl-3-(3-sulfopropyl) imidazolium betaine. Journal of Applied Polymer Science, 77, 14–23.

    Article  CAS  Google Scholar 

  • B. Li, D. Ding, P. Sun, Y. Wang, J. Ma, B. He. (2000). PGSE NMR studies of water states of hydrogel P(Am-NaA). Journal of Applied Polymer Science, 77, 424–427.

    Article  CAS  Google Scholar 

  • T. Lindvig, M.L. Michelsen, G.M. Kontogeorgis. (2002). A Flory–Huggins model based on the Hansen solubility parameters. Fluid Phase Equilibria, 5093, 1–14.

    Google Scholar 

  • V.M.M. Lobo, A.J.M. Valente, A.Y. Polishchuk, G. Geuskens. (2001). Transport of non-associated electrolytes in acrylamide hydrogels. Journal of Molecular Liquids, 94, 179–192.

    Article  CAS  Google Scholar 

  • X.J. Loh, G.R. Deen, X.Y. Gan, L.H. Gan. (2001). Water-sorption and metal-uptake behavior of pH-responsive poly(N-acryloyl-N’-methylpiperazine) gels. Journal of Applied Polymer Science, 80, 268–273.

    Article  CAS  Google Scholar 

  • Z.Y. Lu, R. Hentschke. (2002a). Computer simulation study on the swelling of a model polymer network by a chainlike solvent. Physical Review E, 65, 041807.

    Google Scholar 

  • Z.Y. Lu, R. Hentschke. (2002b). Swelling of model polymer networks with different cross-link densities: A computer simulation study. Physical Review E, 66, 041803.

    Google Scholar 

  • X. Lu, M. Zhai, J. Li, H. Ha. (2000). Radiation preparation and thermo-response swelling of interpenetrating polymer network hydrogel composed of PNIPAAm and PMMA. Radiation Physics and Chemistry, 57, 477–480.

    Article  Google Scholar 

  • A.V. Lyulin, B. Dunweg, O.V. Borisov, A.A. Darinskii. (1999). Computer simulation studies of a single polyelectrolyte chain in poor solvent. Macromolecules, 32, 3264–3278.

    Article  CAS  Google Scholar 

  • T.M. Madkour. (2001). A combined statistical mechanics and molecular dynamics approach for the evaluation of the miscibility of polymers in good, poor and non-solvents. Chemical Physics, 274, 187–198.

    Article  CAS  Google Scholar 

  • K. Makino, H. Agata, H. Ohshima. (2000a). Dependence of temperature-sensitivity of poly(N-isopropylacrylamide-co-acrylic acid) hydrogel microspheres upon their sizes. Journal of Colloid and Interface Science, 230, 128–134.

    Google Scholar 

  • K. Makino, J. Hiyoshi, H. Ohshima. (2000b). Kinetics of swelling and shrinking of poly(N-isopropylacrylamide) hydrogels at different temperatures. Colloids and Surfaces B: Biointerfaces, 19, 197–204.

    Google Scholar 

  • C. Manetti, L. Casciani, N. Pescosolido. (2002). Diffusive contribution to permeation of hydrogel contact lenses theoretical model and experimental evaluation by nuclear magnetic resonance techniques. Polymer, 43, 87–92.

    Article  CAS  Google Scholar 

  • F. Martellini, L.H.I. Mei, J.L. Balino, M. Carenza. (2002). Swelling and water transport in temperature-sensitive hydrogels based on 2-methoxyethylacrylate. Radiation Physics and Chemistry, 63, 29–33.

    Article  CAS  Google Scholar 

  • P. Martens, K.S. Anseth. (2000). Characterization of hydrogels formed from acrylate modified poly(vinyl alcohol) macromers. Polymer, 41, 7715–7722.

    Article  CAS  Google Scholar 

  • A. Matsuda, Y. Katayama, T. Kaneko, J.P. Gong, Y. Osada. (2000). Ionization and order–disorder transition of hydrogels with ionizable hydrophobic side chain. Journal of Molecular Structure, 554, 91–97.

    Article  CAS  Google Scholar 

  • P. McConville, J.M. Pope. (2000). A comparison of water binding and mobility in contact lens hydrogels from NMR measurements of the water self-diffusion coefficient. Polymer, 41, 9081–9088.

    Article  CAS  Google Scholar 

  • P. McConville, J.M. Pope. (2001). 1H NMR T2 relaxation in contact lens hydrogels as a probe of water mobility. Polymer, 42, 3559–3568.

    Article  CAS  Google Scholar 

  • J.R. Meakin, D.W.L. Kukins, C.T. Imrie, R.M. Aspden. (2003). Thermal analysis of poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels. Journal of Materials Science: Materials in Medicine, 14, 9–15.

    Article  CAS  Google Scholar 

  • D. Melekaslan, O. Okay. (2000). Swelling of strong polyelectrolyte hydrogels in polymer solutions: Effect of ion pair formation on the polymer collapse. Polymer, 41, 5737–5747.

    Article  CAS  Google Scholar 

  • D. Melekaslan, O. Okay. (2001). Reentrant phase transition of strong polyelectrolyte poly(N-isopropylacrylamide) gels in PEG solutions. Macromolecular Chemistry and Physics, 202, 304–312.

    Article  CAS  Google Scholar 

  • V. Michailova, S. Titeva, R. Kotsilkova, E. Krusteva, E. Minkov. (2000). Water uptake and relaxation processes in mixed unlimited swelling hydrogels. International Journal of Pharmaceutics, 209, 45–56.

    Article  CAS  Google Scholar 

  • E.C. Muniz, G. Geuskens. (2001). Influence of temperature on the permeability of polyacrylamide hydrogels and semi-IPNs with poly(N-isopropylacrylamide). Journal of Membrane Science, 172, 287–293.

    Article  Google Scholar 

  • H. Muta, K. Ishida, E. Tamaki, M. Satoh. (2002). An IR study on ion-specific and solvent-specific swelling of poly(N-vinyl-2-pyrrolidone) gel. Polymer, 43, 103–110.

    Article  CAS  Google Scholar 

  • H. Muta, R. Kojima, S. Kawauchi, A. Tachibana, M. Satoh. (2001a). Ion-specificity for hydrogen-bonding hydration of polymer: An approach by ab initio molecular orbital calculations. Journal of Molecular Structure: THEOCHEM, 536, 219–226.

    Google Scholar 

  • H. Muta, M. Miwa, M. Satoh. (2001b). Ion-specific swelling of hydrophilic polymer gels. Polymer, 42, 6313–6138.

    Google Scholar 

  • H. Muta, T. Sin, A. Yamanaka, S. Kawauchi, M. Satoh. (2001c). Ion-specificity for hydrogen-bonding hydration of polymer: An approach by ab initio molecular orbital calculations II. Journal of Molecular Structure: THEOCHEM, 574, 195–211.

    Google Scholar 

  • B. Nick, U.W. Suter. (2001). Solubility of water in polymers-atomistic simulations. Computational and Theoretical Polymer Science, 11, 49–54.

    Article  CAS  Google Scholar 

  • T. Norisuye, N. Masui, Y. Kida, D. Ikuta, E. Kokufuta, S. Ito, S. Panyukov, M. Shibayama. (2002). Small angle neutron scattering studies on structural inhomogeneities in polymer gels: irradiation cross-linked gels vs chemically crosslinked gels. Polymer, 43, 5289–5297.

    Article  CAS  Google Scholar 

  • K. Ogawa, Y. Ogawa, E. Kokufuta. (2002). Effect of charge inhomogeneity of polyelectrolyte gels on their swelling behavior. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 209, 267–279.

    Article  CAS  Google Scholar 

  • R.R. Ohs, S.K. De, N.R. Aluru. (2001). Modelling of ionic hydrogel kinetics in buffered solutions, Technical Proceedings of the 2001 International Conference on Modeling and Simulation of Microsystems, 1, 7–10.

    Google Scholar 

  • O. Okay, S. Durmaz. (2002). Charge density dependence of elastic modulus of strong polyelectrolyte hydrogels. Polymer, 43, 1215–1221.

    Article  CAS  Google Scholar 

  • O. Okay, S.B. Sariisik. (2000). Swelling behavior of poly(acrylamide-co-sodium acrylate) hydrogels in aqueous salt solutions: Theory versus experiments. European Polymer Journal, 36, 393–399.

    Article  CAS  Google Scholar 

  • D. Ostrovskii, M. Edvardsson, P. Jacobsson. (2003). Weak polymer-electrolyte interaction revealed by Fermi resonance perturbed Raman bands. Journal of Raman Spectroscopy, 34, 40–49.

    Article  CAS  Google Scholar 

  • M.M. Ozmen, O. Okay. (2003). Swelling behavior of strong polyelectrolyte poly(N-t-butylacrylamide-co-acrylamide) hydrogels. European Polymer Journal, 39, 877–886.

    Article  CAS  Google Scholar 

  • V. Ozturk, O. Okay. (2002). Temperature sensitive poly(N-t-butylacrylamide-co-acrylamide) hydrogels synthesis and swelling behavior. Polymer, 43, 5017–5026.

    Article  CAS  Google Scholar 

  • A. Panda, S.B. Manohar, S. Sabharwal, Y.K. Bhardwaj, A.B. Majali. (2000). Synthesis and swelling characteristics of poly (N-isopropylacrylamide) temperature sensitive hydrogels crosslinked by electron beam irradiation. Radiation Physics and Chemistry, 58, 101–110.

    Article  CAS  Google Scholar 

  • S. Panyukov, Y. Rabin. (1996). Statistical physics of polymer gels. Physics Reports, 269, 1–131.

    Article  CAS  Google Scholar 

  • N.A. Peppas. (1986). Hydrogels in Medicine and Pharmacy, Boca Raton, FL: CRC Press.

    Google Scholar 

  • K. Podual, N.A. Peppas. (2005). Relaxational behavior and swelling-pH master curves of poly[(diethylaminoethyl methacrylate)-graft-(ethylene glycol)] hydrogels. Polymer International, 54, 581–593.

    Article  CAS  Google Scholar 

  • M.M. Pradas, J.L.G. Ribelles, A.S. Aroca, G.G. Ferrer, J.S. Anton, P. Pissis. (2001). Porous poly(2-hydroxyethyl acrylate) hydrogels. Polymer, 42, 4667–4674.

    Article  Google Scholar 

  • X. Qu, A. Wirsen, A.C. Albertsson. (2000). Novel pH-sensitive chitosan hydrogels swelling behavior and states of water. Polymer, 41, 4589–4598.

    Article  CAS  Google Scholar 

  • J.R. Quintana, N.E. Valderruten, N.E. Katime. (1999). Synthesis and swelling kinetics of poly(dimethylaminoethyl acrylate methyl chloride quaternary-co-itaconic acid) hydrogels. Langmuir, 15, 4728–4730.

    Article  CAS  Google Scholar 

  • G.V.N. Rathna, P.R. Chatterji. (2001). Swelling kinetics and mechanistic aspects of thermosensitive interpenetrating polymer networks. Journal of Macromolecular Science: Pure and Applied Chemistry, A38, 43–56.

    Article  CAS  Google Scholar 

  • T. Schmidt, C. Querner, K.F. Arndt. (2003). Characterization methods for radiation crosslinked poly(vinyl methyl ether) hydrogels. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 208, 331–335.

    Article  CAS  Google Scholar 

  • H. Schott. (1992). Swelling kinetics of polymers. Journal of Macromolecular Science: Physics, B31, 1–9.

    Article  Google Scholar 

  • U.P. Schroder, W. Oppermann. (2002). Computer simulation of network formation via crosslinking copolymerization. Macromolecular Theory and Simulations, 6, 151–160.

    Article  Google Scholar 

  • M. Sen, O. Güven. (1998). Prediction of swelling behaviour of hydrogels containing diprotic acid moieties. Polymer, 39, 1165–1172.

    Article  CAS  Google Scholar 

  • M. Sen, O. Güven. (2000). Prediction of the swelling behavior of amphiphilic hydrogels and the determination of average molecular weight between cross-links. Computational and Theoretical Polymer Science, 11, 475–482.

    Article  Google Scholar 

  • M. Sen, O. Guven. (2002). Dynamic deswelling studies of poly(N-vinyl-2-pyrrolidone/itaconic acid) hydrogels swollen in water and terbinafine hydrochloride solutions. European Polymer Journal, 38, 751–757.

    Article  CAS  Google Scholar 

  • B.C. Shin, S.S. Kim, J.K. Ko, J. Jegal, B.M. Lee. (2003). Gradual phase transition of poly(N-isopropylacrylamide-co-acrylic acid) gel induced by electric current. European Polymer Journal, 39, 579–584.

    Article  CAS  Google Scholar 

  • M.R. Simmons, E.N. Yamasaki, C.S. Patrickios. (2000). Cationic amphiphilic model networks: Synthesis by group transfer polymerization and characterization of the degree of swelling. Macromolecules, 33, 3176–3179.

    Article  CAS  Google Scholar 

  • Y. Suetoh, M. Shibayama. (2000). Effects of non-uniform solvation on thermal response in poly(N-isopropylacrylamide) gels. Polymer, 41, 505–510.

    Article  CAS  Google Scholar 

  • T. Tokuhiro. (2001). Temperature dependence of density of polymer gels: 2. Poly[N-(1,3-dioxolan-2-ylmethyl)-N-methyl-acrylamide] networks -water or -alcohol system. Journal of Physical Chemistry B, 105, 11955–11960.

    Article  CAS  Google Scholar 

  • A.I. Triftaridou, S.C. Hadjiyannakou, M. Vamvakaki, C.S. Patrickios. (2002). Synthesis, characterization, and modelling of cationic amphiphilic model hydrogels: Effects of polymer composition and architecture. Macromolecules, 35, 2506–2513.

    Article  CAS  Google Scholar 

  • J. Valencia, I.F. Pierola. (2001). Equilibrium swelling properties of poly(N-vinylimidazole-co-sodium styrenesulfonate) hydrogels. European Polymer Journal, 37, 2345–2352.

    Article  CAS  Google Scholar 

  • J. Valencia, I.F. Pierola. (2002). Swelling kinetics of poly(N-vinylimidazole-co-sodium styrenesulfonate) hydrogels. Journal of Applied Polymer Science, 83, 191–200.

    Article  CAS  Google Scholar 

  • A.J.M. Valente, A.Y. Polishchuk, V.M.M. Lobo, G. Geuskens. (2002). Diffusion coefficients of lithium chloride and potassium chloride in hydrogel membranes derived from acrylamide. European Polymer Journal, 38, 13–18.

    Article  CAS  Google Scholar 

  • S. Varghese, A.K. Lele, R.A. Masjelkar. (2000). Designing new thermoreversible gels by molecular tailoring of hydrophilic-hydrophobic interactions. Journal of Physical Chemistry, 112, 3063–3070.

    Article  CAS  Google Scholar 

  • E.V. Vashuk, E.V. Vorobieva, I.I. Basalyga, N.P. Krutko. (2001). Water-absorbing properties of hydrogels based on polymeric complexes. Materials Research Innovations, 4, 350–352.

    Article  CAS  Google Scholar 

  • M.S. Vicente, J.C.Y. Gottifredi. (2000). Effect of volume changes due to absorption in polymer membranes. Journal of Membrane Science, 169, 249–254.

    Article  CAS  Google Scholar 

  • J.S. Vrentas, C.M. Vrentas. (1994). Solvent self-diffusion in rubbery polymer-solvent systems. Macromolecules, 27, 4684–4690.

    Article  CAS  Google Scholar 

  • T. Wallmersperger, B. Kroplin, J. Holdenried, W. Gulch. (2001). A Coupled Multi-Field-Formulation for Ionic Polymer Gels in Electric Fields. In: Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, Y. Bar-Cohen (Ed.) SPIE Press, 4329, pp. 264–275.

    Google Scholar 

  • B. Wang, T. Ymaguchi, S. Nakao. (2000). Solvent diffusion in amorphous glassy polymers. Journal of Polymer Science Part B: Polymer Physics, 38, 846–856.

    Article  CAS  Google Scholar 

  • J.A. White, W.M. Deen. (2002). Agarose-dextran gels as synthetic analogs of glomerular basement membrane water permeability. Biophysical Journal, 82, 2081–2089.

    Article  CAS  Google Scholar 

  • C.J. Whiting, A.M. Voice, P.D. Olmsted, T.C.B. Mcleish. (2001). Shear modulus of polyelectrolyte gels under electric field. Journal of Physics: Condensed Matter, 13, 1381–1393.

    Article  CAS  Google Scholar 

  • W. Xue, S. Champ, M.B. Huglin. (2001a). Thermoreversible swelling behaviour of hydrogels based on N-isopropylacrylamide with a zwitterionic comonomer. European Polymer Journal, 37, 869–875.

    Google Scholar 

  • W. Xue, S. Champ, M.B. Huglin. (2001b). Network and swelling parameters of chemically crosslinked thermoreversible hydrogels. Polymer, 42, 3665–3669.

    Google Scholar 

  • W. Xue, I.W. Hamley. (2002). Thermoreversible swelling behaviour of hydrogels based on N-isopropylacrylamide with a hydrophobic comonomer. Polymer, 43, 3069–3077.

    Article  CAS  Google Scholar 

  • L. Yao, S. Krause. (2003). Electromechanical responses of strong acid polymer gels in DC electric fields. Macromolecules, 36, 2055–2065.

    Article  CAS  Google Scholar 

  • H. Yasunaga, Y. Shirakawa, H. Urakawa, K. Kajiwara. (2002). Dynamic behaviour of water in hydrogel containing hydrophobic side chains as studied by pulse 1H NMR. Journal of Molecular Structure, 602–603, 399–404.

    Article  Google Scholar 

  • B. Yildiz, B. Isik, M. Kis. (2002). Thermoresponsive poly(N-isopropylacrylamide-co-acrylamide-co-2-hydroxyethyl methacrylate) hydrogels. Reactive and Functional Polymers, 52, 3–10.

    Article  CAS  Google Scholar 

  • M.K. Yoo, Y.K. Sung, Y.M. Lee, C.S. Cho. (2000). Effect of polyelectrolyte on the lower critical solution temperature of poly(N-isopropyl acrylamide) in the poly(NIPAAm-co-acrylic acid) hydrogel. Polymer, 41, 5713–5719.

    Article  CAS  Google Scholar 

  • L. Zha, J. Hu, C. Wang, S. Fu, M. Luo. (2002). The effect of electrolyte on the colloidal properties of poly(N-isopropylacrylamide-co-dimethylaminoethylmethacrylate) microgel latexes. Colloid and Polymer Science, 280, 1116–1121.

    Article  CAS  Google Scholar 

  • J. Zhang, N.A. Peppas. (2000). Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules, 33, 102–107.

    Article  CAS  Google Scholar 

  • X.Z. Zhang, D.Q. Wu, C.C. Chu. (2003). Effect of the crosslinking level on the properties of temperature-sensitive poly(N-isopropylacrylamide) hydrogels. Journal of Polymer Science Part B: Polymer Physics, 41, 582–593.

    Article  CAS  Google Scholar 

  • X.Z. Zhang, R.X. Zhuo. (2000a). Preparation of fast responsive, thermally sensitive poly(N-isopropylacrylamide) gel. European Polymer Journal, 36, 2301–2303.

    Google Scholar 

  • X.Z. Zhang, R.X. Zhuo. (2000b). Novel synthesis of temperature-sensitive poly(N-isopropylacrylamide) hydrogel with fast deswelling rate. European Polymer Journal, 36, 643–645.

    Google Scholar 

  • X.Z. Zhang, R.X. Zhuo. (2000c). Synthesis of temperature-sensitive poly(N-isopropylacrylamide) hydrogel with improved Surface Property. Journal of Colloid and Interface Science, 223, 311–313.

    Article  CAS  Google Scholar 

  • X.Z. Zhang, R.X. Zhuo. (2002). Synthesis, properties of thermosensitive poly(N-isopropylacrylamide-co-methyl methacrylate) hydrogel with rapid response. Materials Letters, 52, 5–9.

    Article  CAS  Google Scholar 

  • B. Zhao, J.S. Moore. (2001). Fast pH- and ionic strength-responsive hydrogels in microchannels. Langmuir, 17, 4758–4763.

    Article  CAS  Google Scholar 

  • X. Zhou, Y.C. Hon, S. Sun, A.F.T. Mak. (2002). Numerical simulation of the steady-state deformation of a smart hydrogel under an external electric field. Smart Materials and Structures, 11, 459–467.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, H. (2009). Introduction. In: Smart Hydrogel Modelling. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02368-2_1

Download citation

Publish with us

Policies and ethics