Hydrogel is a form of materials generally constructed by hydrophilic multiphase polymer mixture that may exhibit both solid-like and liquid-like properties. Its structural framework is formed from three-dimensional networks of randomly crosslinked polymeric chains that embody three different phases, namely solid polymer network matrix, interstitial water or biological fluid and ion species.


Lower Critical Solution Temperature Volume Transition Volume Phase Transition Copolymeric Hydrogel Elastic Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. E.C. Achilleos, K.N. Christodoulou, I.G. Kevrekidis. (2001). A transport model for swelling of polyelectrolyte gels in simple and complex geometries. Computational and Theoretical Polymer Science, 11, 63–80.CrossRefGoogle Scholar
  2. E.C. Achilleos, R.K. Prud’homme, K.N. Christodoulou, K.R. Gee, I.G. Kevrekidis. (2000). Dynamic deformation visualization in swelling of polymer gels. Chemical Engineering Science, 55, 3335–3340.CrossRefGoogle Scholar
  3. S. Alsoy, J.L. Duda. (2002). Influence of swelling and diffusion-induced convection on polymer sorption processes. AIChE Journal, 48, 1849–1855.CrossRefGoogle Scholar
  4. C. Alvarez-Lorenzo, A. Concheiro. (2002). Reversible adsorption by a pH- and temperature-sensitive acrylic hydrogel. Journal of Controlled Release, 80, 247–257.CrossRefGoogle Scholar
  5. M. Annaka, Y. Amo, S. Sasaki, Y. Tominaga, K. Motokawa, T. Nakahira. (2002). Salt effect on volume phase transition of a gel. Physical Review E, 65, 031805-(8).CrossRefGoogle Scholar
  6. M. Annaka, M. Tokita, T. Tanaka, S. Tanaka, T. Nakahira. (2000). The gel that memorizes phases. The Journal of Physical Chemistry, 112, 471–477.CrossRefGoogle Scholar
  7. G. Astarita. (1989). Heat and mass transfer in solid polymer system. In: Transport Phenomena in Polymeric Systems, R.A. Mashelkar, A.S. Mujumdar, R. Kamal (Eds.) New York: Wiley, pp. 339–351.Google Scholar
  8. A.M. Atta. (2002). Swelling behaviors of polyelectrolyte hydrogels containing sulfonate groups. Polymers for Advanced Technologies, 13, 567–576.CrossRefGoogle Scholar
  9. E.M. Aydt, R. Hentschke. (2000). Swelling of a model network: A Gibbs-ensemble molecular dynamics study. Journal of Chemical Physics, 112, 5480–5487.CrossRefGoogle Scholar
  10. S.K. Bajpai. (2000). Swelling-deswelling behavior of poly(acrylamide-co-maleic acid) hydrogels. Journal of Applied Polymer Science, 80, 2782–2789.CrossRefGoogle Scholar
  11. A.K. Bajpai, A. Giri. (2002). Swelling dynamics of a macromolecular hydrophilic network and evaluation of its potential for controlled release of agrochemicals. Reactive and Functional Polymers, 53, 125–141.CrossRefGoogle Scholar
  12. A.K. Bajpai, M. Shrivastava. (2000). Dynamic swelling behavior of polyacrylamide based three component hydrogels. Journal of Macromolecular Science: Pure and Applied Chemistry, A37, 1069–1088.CrossRefGoogle Scholar
  13. A.K. Bajpai, M. Shrivastava. (2001). Water sorption dynamics of hydrophobic, ionizable copolymer gels. Journal of Scientific and Industrial Research India, 60, 131–140.Google Scholar
  14. A.K. Bajpai, M. Shrivastava. (2002a). Enhanced water sorption of a semi-interpenetrating polymer network (IPN) of poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(ethylene glycol) (PEG). Journal of Macromolecular Science: Pure and Applied Chemistry, A39, 1069–1088.Google Scholar
  15. A.K. Bajpai, M. Shrivastava. (2002b). Water sorption dynamics of a binary copolymeric hydrogel of a-hydroxyethyl methacrylate (HEMA). Journal of Biomaterials Science – Polymer Edition, 13, 237–256.Google Scholar
  16. A.K. Bajpai, M. Shrivastava. (2002c). Swelling kinetics of a hydrogel of poly(ethylene glycol) and poly(acrylamide-co-styrene). Journal of Applied Polymer Science, 85, 1419–1428.CrossRefGoogle Scholar
  17. B. Barriere, L. Leibler. (2003). Kinetics of solvent absorption and permeation through a highly swellable elastomeric network. Journal of Polymer Science Part B: Polymer Physics, 41, 166–182.CrossRefGoogle Scholar
  18. A.R. Berens, H.B. Hopfenberg. (1978). Diffusion and relaxation in glassy polymer powders: 2. separation of diffusion and relaxation parameters. Polymer, 19, 489–496.CrossRefGoogle Scholar
  19. J.P. Boisvert, A. Malgat, I. Pochard, C. Daneault. (2002). Influence of the counter-ion on the effective charge of polyacrylic acid in dilute condition. Polymer, 43, 141–148.CrossRefGoogle Scholar
  20. P. Bouillot, B.A. Vincent. (2000). Comparison of the swelling behaviour of copolymer and interpenetrating network microgel particles. Colloid and Polymer Science, 278, 74–79.CrossRefGoogle Scholar
  21. F. Castelli, G. Pitarresi, G. Giammona. (2000). Influence of different parameters on drug release from hydrogel systems to a biomembrane model. Evaluation by differential scanning calorimetry technique. Biomaterials, 21, 821–833.CrossRefGoogle Scholar
  22. T. Caykara, U. Bozkaya, O. Kantoglu. (2003). Network structure and swelling behavior of poly(acrylamide/crotonic acid) hydrogels in aqueous salt solution. Journal of Polymer Science Part B: Polymer Physics, 41, 1656–1664.CrossRefGoogle Scholar
  23. T. Caykara, C. Ozyurek, O. Kantoglu, O. Guven. (2000). Equilibrium swelling behavior of pH- and temperature-sensitive poly(N-vinyl 2-pyrrolidone-g-citric acid) polyelectrolyte hydrogels. Journal of Polymer Science Part B: Polymer Physics, 38, 2063–2071.CrossRefGoogle Scholar
  24. A.N. Chatterjee, Q. Yu, J.S. Moore, N.R. Aluru. (2003). Mathematical modeling and simulation of dissolvable hydrogels. Journal of Aerospace Engineering, 16, 55–64.CrossRefGoogle Scholar
  25. J. Chen, K. Park. (2000). Synthesis of fast-swelling, superporous sucrose hydrogels. Carbohydrate Polymers, 41, 259–268.CrossRefGoogle Scholar
  26. Y. Chen, M. Yi. (2001). Swelling kinetics and stimuli-responsiveness of poly(DMAEMA) hydrogels prepared by UV-irradiation. Radiation Physics and Chemistry, 61, 65–68.CrossRefGoogle Scholar
  27. H.C. Chiu, A.T. Wu, Y.F. Lin. (2001). Synthesis and characterization of acrylic acidcontaining dextran hydrogels. Polymer, 42, 1471–1479.CrossRefGoogle Scholar
  28. H.C. Chiu, Y.F. Lin, Y.H. Hsu. (2002a). Effects of acrylic acid on preparation and swelling properties of pH-sensitive dextran hydrogels. Biomaterials, 23, 1103–1112.Google Scholar
  29. H.C. Chiu, Y.F. Lin, S.H. Hung. (2002b). Equilibrium swelling of copolymerized acrylic acid-methacrylated dextran networks: Effects of ph and neutral salt. Macromolecules, 35, 5235–5242.Google Scholar
  30. C.S. Cho, Y.I. Jeong, S.K. Kim, J.W. Nah, M. Kubota, T. Komoto. (2000). Thermoplastic hydrogel based on hexablock copolymer composed of poly(-benzyl -glutamate) and poly(ethylene oxide). Polymer, 41, 5185–5193.CrossRefGoogle Scholar
  31. K.F. Chou, C.C. Han, S. Lee. (2000). Water transport in 2-hydroxyethyl methacrylate copolymer irradiated by γ rays in air and related phenomena. Journal of Polymer Science Part B: Polymer Physics, 38, 659–671.CrossRefGoogle Scholar
  32. W.Y. Chuang, T.H. Young, D.M. Wang, R.L. Luo, Y.M. Sun. (2000). Swelling behavior of hydrophobic polymers in water ethanol mixtures. Polymer, 41, 8339–8347.CrossRefGoogle Scholar
  33. R.O.R. Costa, R.F.S. Freitas. (2002). Phase behavior of poly(N-isopropylacrylamide) in binary aqueous solutions. Polymer, 43, 5879–5885.CrossRefGoogle Scholar
  34. A.M.A. Da Costa, A.M. Amado. (2000). Molecular interactions in polyacrylamide/lithium perchlorate hydrogel composites. Polymer, 41, 5361–5365.CrossRefGoogle Scholar
  35. D. Dibbern-brunelli, T.D.Z. Atvars. (2000). Thermal transitions of poly(vinyl alcohol) hydrogel sensed by a fluorescent probe. Journal of Applied Polymer Science, 76, 815–824.CrossRefGoogle Scholar
  36. S. Ji, J. Ding. (2002). The wetting process of a dry polymeric hydrogel. Polymer Journal, 34, 267–270.CrossRefGoogle Scholar
  37. D. Dhara, P.R. Chatterji. (2000). Phase transition in linear and cross-linked poly(N-isopropylacrylamide) in water: Effect of various types of additives. Journal of Macromolecular Science, Part C: Polymer Reviews, C40, 51–68.Google Scholar
  38. E. Diez-Pena, I. Quijada-Garrido, J.M. Barrales-Rienda. (2002). On the water swelling behaviour of poly(N-isopropylacrylamide) [P(N-iPAAm)] poly(methacrylic acid) [P(MAA)] their random copolymers and sequential interpenetrating polymer networks (IPNs). Polymer, 43, 4341–4348.CrossRefGoogle Scholar
  39. S. Durmaz, O. Okay. (2000). Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-based hydrogels synthesis and characterization. Polymer, 41, 3693–3704.CrossRefGoogle Scholar
  40. M. Ebara, T. Aoyagi, K. Sakai, T. Okano. (2001). The incorporation of carboxylate groups into temperature-responsive poly(N-isopropylacrylamide)-based hydrogels promotes rapid gel shrinking. Journal of Polymer Science Part A: Polymer Chemistry, 39, 335–343.CrossRefGoogle Scholar
  41. G.M. Eichenbaum, P.K. Kiser, D. Shah, W.P. Meuer, D. Needham, S.A. Simon. (2000). Alkali earth metal binding properties of ionic microgels. Macromolecules, 33, 4087–4093.CrossRefGoogle Scholar
  42. D.J. Enscore, H.B. Hopfenberg, V.T. Stannett. (1977). Effect of particle size on the mechanism controlling n-hexane sorption in glassy polystyrene microspheres. Polymer, 18, 793–800.CrossRefGoogle Scholar
  43. B. Erman, P.J. Flory. (1986). Critical phenomena and transitions in swollen polymer networks and in linear macromolecules. Macromolecules, 19, 2342–2353.CrossRefGoogle Scholar
  44. G. Evmenenko, T. Budtova. (2000). Structure changes in hydrogels immersed in a linear polymer solution studied by SANS. Polymer, 41, 4943–4947.CrossRefGoogle Scholar
  45. J. Fei, Z. Zhang, L. Gu. (2002). Bending behavior of electroresponsive poly(vinyl alcohol) and poly(acrylic acid) semi-interpenetrating network hydrogel fibres under an electric stimulus. Polymer International, 51, 502–509.CrossRefGoogle Scholar
  46. F. Fergg, F.J. Keil. (2001). Diffusion and reactions of multicomponent electrolytes in poly(vinyl alcohol) hydrogels –– modeling and experiment. Chemical Engineering Science, 56, 1305–1315.Google Scholar
  47. L. Ferreira, M.M. Vidal, M.H. Gil. (2000). Evaluation of poly(2-hydroxyethyl methacrylate) gels as drug delivery systems at different pH values. International Journal of Pharmaceutics, 194, 169–180.CrossRefGoogle Scholar
  48. P.J. Flory. (1953). Principles of Polymer Chemistry, Ithaca, New York: Cornell University Press.Google Scholar
  49. A. Fomenko, Z. Sedlakova, J. Plestil, M. Ilavsky. (2002). Phase transition in swollen gels: Part 32. Temperature transition in charged poly(N-isopropylmethacrylamide) hydrogels in water and aqueous NaCl solutions. Physical Chemistry Chemical Physics, 4, 4360–4367.CrossRefGoogle Scholar
  50. M.W.C.P. Franse, K. te Nijenhuis. (2000). Crosslinking index, molecular weight distribution and rubber equilibrium shear modulus during polyfunctional crosslinking of existing polymer. Part 5. Primary polymer with a discrete distribution of the molecular weight. Journal of Molecular Structure, 554, 1–10.CrossRefGoogle Scholar
  51. H. Furukawa. (2000). Effect of varying preparing-concentration on the equilibrium swelling of polyacrylamide gels. Journal of Molecular Structure, 554, 11–19.CrossRefGoogle Scholar
  52. L.H. Gan, G.R. Deen, X.J. Loh, X.Y. Gan. (2001). New stimuli-responsive copolymers of N-acryloyl-N’-alkyl piperazine and methyl methacrylate and their hydrogels. Polymer, 42, 65–69.CrossRefGoogle Scholar
  53. G. Gates, J.P. Harmon, J. Ors, P. Benz. (2003). 2, 3-dihydroxypropyl methacrylate and 2-hydroxyethyl methacrylate hydrogels: Gel structure and transport properties. Polymer, 44, 215–222.CrossRefGoogle Scholar
  54. A.J. Galli, W.H. Brumage. (1983). The freely jointed chain in expanded form. Journal of Chemical Physics, 79, 2411.CrossRefGoogle Scholar
  55. R.A. Gemeinhart, J. Chen, H. Park, K. Park. (2000). pH-Sensitivity of fast responsive superporous hydrogels. Journal of Biomaterials Science, Polymer Edition, 11, 1371–1380.CrossRefGoogle Scholar
  56. P.E. Grimshaw, J.H. Nussbaum, A.J. Grodzinsky. (1990). Kinetics of electricity and chemically induced swelling in polyelectrolyte gels. Journal of Chemical Physics, 93, 4462–4472.CrossRefGoogle Scholar
  57. C.M. Hansen. (2000). Hansen Solubility Parameters: A User’s Handbook, Boca Raton: CRC Press.Google Scholar
  58. J.P. Harmon, S. Lee, J.C.M. Li. (1987). Methanol treatment in PMMA: the effect of mechanical deformation. Journal of Polymer Science Part A: Polymer Chemistry, 25, 3215–3229.CrossRefGoogle Scholar
  59. M.M. Hassan, C.J. Durning. (1999). Effects of polymer molecular weight and temperature on case II transport. Journal of Polymer Science Part B: Polymer Physics, 37, 3159–3171.CrossRefGoogle Scholar
  60. D.J.T. Hill, N.G. Moss, P.J. Pomery, A.K. Whittaker. (2000). Copolymer hydrogels of 2-hydroxyethyl methacrylate with n-butyl methacrylate and cyclohexyl methacrylate synthesis characterization and uptake of water. Polymer, 41, 1287–1296.CrossRefGoogle Scholar
  61. A. Hiroki, Y. Maekawa, M. Yoshida, K. Kubota, R. Katakai. (2001). Volume phase transitions of poly(acryloyl-L-proline methyl ester) gels in response to water-alcohol composition. Polymer, 42, 1863–1867.CrossRefGoogle Scholar
  62. Y.P. Hong, Y.C. Bae. (2002). Phase behaviors of partially ionized hydrogels in aqueous salt solutions: Applicability of the modified double-lattice model. Journal of Polymer Science Part B: Polymer Physics, 40, 2333–2338.CrossRefGoogle Scholar
  63. W. Hong, X. Zhao, J. Zhou, Z. Suo. (2008). A theory of coupled diffusion and large deformation in polymeric gels, Journal of the Mechanics and Physics of Solids, 56, 1779–1793.CrossRefGoogle Scholar
  64. Y. Huang, I. Szleifer, N.A. Peppas. (2002). A molecular theory of polymer gels. Macromolecules, 35, 1373–1380.CrossRefGoogle Scholar
  65. A. Huther, B. Schafer, X. Xu, G. Maurer. (2002). Phase equilibria of hydrogel systems. Physical Chemistry Chemical Physics, 4, 835–844.CrossRefGoogle Scholar
  66. A. Ikehat, H. Ushiki. (2002). Effect of salt on the elastic modulus of poly(N-isopropylacrylamide) gels. Polymer, 43, 2089–2094.CrossRefGoogle Scholar
  67. M. Ilavsky, G. Mamytbekov, L. Hanykova, K. Dusek. (2002). Phase transition in swollen gels: 31. Swelling and mechanical behaviour of interpenetrating networks composed of poly(1-vinyl-2-pyrrolidone) and polyacrylamide in water/acetone mixtures. European Polymer Journal, 38, 875–883.CrossRefGoogle Scholar
  68. K. Ito, Y. Ujihira, T. Yamashita, K. Horie. (2000). Temperature dependence of free volume of polyacrylamide gels studied by positron lifetime measurements. Radiation Physics and Chemistry, 58, 521–524.CrossRefGoogle Scholar
  69. E. Jabbari, S. Nozari. (2000). Swelling behavior of acrylic acid hydrogels prepared by γ-radiation crosslinking of polyacrylic acid in aqueous solution. European Polymer Journal, 36, 2685–2692.CrossRefGoogle Scholar
  70. B.D. Johnson, D.J. Niedermaier, W.C. Crone, J. Moorthy, D.J. Beebe. (2002). Mechanical properties of a pH sensitive hydrogel, Proceedings of the 2002 Annual Conference of Society for Experimental Mechanics, Milwaukee, Wisconsin.Google Scholar
  71. E. Karadag, D. Saraydin. (2002). Swelling of superabsorbent acrylamide/sodium acrylate hydrogels prepared using multifunctional crosslinkers. Turkish Journal of Chemistry, 26, 863–875.Google Scholar
  72. I. Katime, E.D. de Apodaca. (2000). Acrylic acid/methyl methacrylate hydrogels. I. Effect of composition on mechanical and thermodynamic properties. Journal of Macromolecular Science: Pure and Applied Chemistry, A37, 307–321.CrossRefGoogle Scholar
  73. I. Katime, E. Rodriguez. (2001). Absorption of metal ions and swelling properties of poly(acrylic acid-co-itaconic acid) hydrogels. Journal of Macromolecular Science: Pure and Applied Chemistry, A38, 543–558.CrossRefGoogle Scholar
  74. N.R. Kenkare, C.K. Hall, S.A. Khan. (2000). Theory and simulation of the swelling of polymer gels. Journal of Physical Chemistry, 113, 404–418.CrossRefGoogle Scholar
  75. M.N. Khalid, F. Agnely, N. Yagoubi, J.L. Grossiord, G. Couarraze. (2002). Water state characterization, swelling behavior, thermal and mechanical properties of chitosan based networks. European Journal of Pharmaceutical Sciences, 15, 425–432.CrossRefGoogle Scholar
  76. A.R. Khokhlov, E. Yu. Kramarenko. (1994). Polyelectrolyte/Ionomer behavior in polymer gel collapse. Macromolecular Theory and Simulations, 3, 45–59.CrossRefGoogle Scholar
  77. S.J. Kim, S.J. Park, I.Y. Kim, M.S. Shin, S.I. Kim. (2002). Electric stimuli responses to poly(vinyl alcohol)/chitosan interpenetrating polymer network hydrogel in NaCl solutions. Journal of Applied Polymer Science, 86, 2285–2289.CrossRefGoogle Scholar
  78. S.J. Kim, S.J. Park, S.I. Kim. (2003a). Synthesis and characteristics of interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and poly(N-isopropylacrylamide). Reactive and Functional Polymers, 55, 61–67.Google Scholar
  79. B. Kim, N.A. Peppas. (2002). Complexation phenomena in pH-responsive copolymer networks with pendent saccharides. Macromolecules, 35, 9545–9550.CrossRefGoogle Scholar
  80. S.J. Kim, G.Y. Yoon, Y.M. Lee, S.I. Kim. (2003b). Electrical sensitive behavior of poly(vinyl alcohol)/poly(diallyldimethylammonium chloride) IPN hydrogel. Sensors and Actuators B: Chemical, 88, 286–291.Google Scholar
  81. J. Kovac. (1978). Modified Gaussian model for rubber elasticity. Macromolecules, 11, 362–365.CrossRefGoogle Scholar
  82. E. Yu. Kramarenko, A.R. Khokhlov, K. Yoshikawa. (2000). A three-state model for counterions in a dilute solution of weakly charged polyelectrolytes. Macromolecular Theory and Simulations, 9, 249–256.CrossRefGoogle Scholar
  83. K.Y. Lee, K.H. Bouhadir, D.J. Mooney. (2000). Degradation behavior of covalently cross-linked poly(aldehyde guluronate) hydrogels. Macromolecules, 33, 97–101.CrossRefGoogle Scholar
  84. W.F. Lee, Y.J. Chen. (2001). Studies on preparation and swelling properties of the N-isopropylacrylamide/chitosan semi-IPN and IPN hydrogels. Journal of Applied Polymer Science, 82, 2487–2496.CrossRefGoogle Scholar
  85. B.C. Lee, R.P. Danner. (1996). Application of the group-contribution lattice-fluid equation of state to random copolymer-solvent systems, Fluid Phase Equilibria, 117, 33–39.CrossRefGoogle Scholar
  86. W.F. Lee, Y.H. Lin. (2001). pH-reversible hydrogels. IV. Swelling behavior of the 2-hydroxyethyl methacrylate-co-acrylic acid-co-sodium acrylate copolymeric hydrogels. Journal of Applied Polymer Science, 81, 1360–1371.CrossRefGoogle Scholar
  87. J. Lee, C.W. Marcosko, D.W. Urry. (2001). Phase transition and elasticity of protein-based hydrogels. Journal of Biomaterials Science – Polymer Edition, 12, 229–242.CrossRefGoogle Scholar
  88. W.F. Lee, P.L. Yeh. (2000). Thermoreversible hydrogels. IX. Swelling behaviors of thermosensitive hydrogels copolymerized by N-isopropylacrylamide with 1-vinyl-3-(3-sulfopropyl) imidazolium betaine. Journal of Applied Polymer Science, 77, 14–23.CrossRefGoogle Scholar
  89. B. Li, D. Ding, P. Sun, Y. Wang, J. Ma, B. He. (2000). PGSE NMR studies of water states of hydrogel P(Am-NaA). Journal of Applied Polymer Science, 77, 424–427.CrossRefGoogle Scholar
  90. T. Lindvig, M.L. Michelsen, G.M. Kontogeorgis. (2002). A Flory–Huggins model based on the Hansen solubility parameters. Fluid Phase Equilibria, 5093, 1–14.Google Scholar
  91. V.M.M. Lobo, A.J.M. Valente, A.Y. Polishchuk, G. Geuskens. (2001). Transport of non-associated electrolytes in acrylamide hydrogels. Journal of Molecular Liquids, 94, 179–192.CrossRefGoogle Scholar
  92. X.J. Loh, G.R. Deen, X.Y. Gan, L.H. Gan. (2001). Water-sorption and metal-uptake behavior of pH-responsive poly(N-acryloyl-N’-methylpiperazine) gels. Journal of Applied Polymer Science, 80, 268–273.CrossRefGoogle Scholar
  93. Z.Y. Lu, R. Hentschke. (2002a). Computer simulation study on the swelling of a model polymer network by a chainlike solvent. Physical Review E, 65, 041807.Google Scholar
  94. Z.Y. Lu, R. Hentschke. (2002b). Swelling of model polymer networks with different cross-link densities: A computer simulation study. Physical Review E, 66, 041803.Google Scholar
  95. X. Lu, M. Zhai, J. Li, H. Ha. (2000). Radiation preparation and thermo-response swelling of interpenetrating polymer network hydrogel composed of PNIPAAm and PMMA. Radiation Physics and Chemistry, 57, 477–480.CrossRefGoogle Scholar
  96. A.V. Lyulin, B. Dunweg, O.V. Borisov, A.A. Darinskii. (1999). Computer simulation studies of a single polyelectrolyte chain in poor solvent. Macromolecules, 32, 3264–3278.CrossRefGoogle Scholar
  97. T.M. Madkour. (2001). A combined statistical mechanics and molecular dynamics approach for the evaluation of the miscibility of polymers in good, poor and non-solvents. Chemical Physics, 274, 187–198.CrossRefGoogle Scholar
  98. K. Makino, H. Agata, H. Ohshima. (2000a). Dependence of temperature-sensitivity of poly(N-isopropylacrylamide-co-acrylic acid) hydrogel microspheres upon their sizes. Journal of Colloid and Interface Science, 230, 128–134.Google Scholar
  99. K. Makino, J. Hiyoshi, H. Ohshima. (2000b). Kinetics of swelling and shrinking of poly(N-isopropylacrylamide) hydrogels at different temperatures. Colloids and Surfaces B: Biointerfaces, 19, 197–204.Google Scholar
  100. C. Manetti, L. Casciani, N. Pescosolido. (2002). Diffusive contribution to permeation of hydrogel contact lenses theoretical model and experimental evaluation by nuclear magnetic resonance techniques. Polymer, 43, 87–92.CrossRefGoogle Scholar
  101. F. Martellini, L.H.I. Mei, J.L. Balino, M. Carenza. (2002). Swelling and water transport in temperature-sensitive hydrogels based on 2-methoxyethylacrylate. Radiation Physics and Chemistry, 63, 29–33.CrossRefGoogle Scholar
  102. P. Martens, K.S. Anseth. (2000). Characterization of hydrogels formed from acrylate modified poly(vinyl alcohol) macromers. Polymer, 41, 7715–7722.CrossRefGoogle Scholar
  103. A. Matsuda, Y. Katayama, T. Kaneko, J.P. Gong, Y. Osada. (2000). Ionization and order–disorder transition of hydrogels with ionizable hydrophobic side chain. Journal of Molecular Structure, 554, 91–97.CrossRefGoogle Scholar
  104. P. McConville, J.M. Pope. (2000). A comparison of water binding and mobility in contact lens hydrogels from NMR measurements of the water self-diffusion coefficient. Polymer, 41, 9081–9088.CrossRefGoogle Scholar
  105. P. McConville, J.M. Pope. (2001). 1H NMR T2 relaxation in contact lens hydrogels as a probe of water mobility. Polymer, 42, 3559–3568.CrossRefGoogle Scholar
  106. J.R. Meakin, D.W.L. Kukins, C.T. Imrie, R.M. Aspden. (2003). Thermal analysis of poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels. Journal of Materials Science: Materials in Medicine, 14, 9–15.CrossRefGoogle Scholar
  107. D. Melekaslan, O. Okay. (2000). Swelling of strong polyelectrolyte hydrogels in polymer solutions: Effect of ion pair formation on the polymer collapse. Polymer, 41, 5737–5747.CrossRefGoogle Scholar
  108. D. Melekaslan, O. Okay. (2001). Reentrant phase transition of strong polyelectrolyte poly(N-isopropylacrylamide) gels in PEG solutions. Macromolecular Chemistry and Physics, 202, 304–312.CrossRefGoogle Scholar
  109. V. Michailova, S. Titeva, R. Kotsilkova, E. Krusteva, E. Minkov. (2000). Water uptake and relaxation processes in mixed unlimited swelling hydrogels. International Journal of Pharmaceutics, 209, 45–56.CrossRefGoogle Scholar
  110. E.C. Muniz, G. Geuskens. (2001). Influence of temperature on the permeability of polyacrylamide hydrogels and semi-IPNs with poly(N-isopropylacrylamide). Journal of Membrane Science, 172, 287–293.CrossRefGoogle Scholar
  111. H. Muta, K. Ishida, E. Tamaki, M. Satoh. (2002). An IR study on ion-specific and solvent-specific swelling of poly(N-vinyl-2-pyrrolidone) gel. Polymer, 43, 103–110.CrossRefGoogle Scholar
  112. H. Muta, R. Kojima, S. Kawauchi, A. Tachibana, M. Satoh. (2001a). Ion-specificity for hydrogen-bonding hydration of polymer: An approach by ab initio molecular orbital calculations. Journal of Molecular Structure: THEOCHEM, 536, 219–226.Google Scholar
  113. H. Muta, M. Miwa, M. Satoh. (2001b). Ion-specific swelling of hydrophilic polymer gels. Polymer, 42, 6313–6138.Google Scholar
  114. H. Muta, T. Sin, A. Yamanaka, S. Kawauchi, M. Satoh. (2001c). Ion-specificity for hydrogen-bonding hydration of polymer: An approach by ab initio molecular orbital calculations II. Journal of Molecular Structure: THEOCHEM, 574, 195–211.Google Scholar
  115. B. Nick, U.W. Suter. (2001). Solubility of water in polymers-atomistic simulations. Computational and Theoretical Polymer Science, 11, 49–54.CrossRefGoogle Scholar
  116. T. Norisuye, N. Masui, Y. Kida, D. Ikuta, E. Kokufuta, S. Ito, S. Panyukov, M. Shibayama. (2002). Small angle neutron scattering studies on structural inhomogeneities in polymer gels: irradiation cross-linked gels vs chemically crosslinked gels. Polymer, 43, 5289–5297.CrossRefGoogle Scholar
  117. K. Ogawa, Y. Ogawa, E. Kokufuta. (2002). Effect of charge inhomogeneity of polyelectrolyte gels on their swelling behavior. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 209, 267–279.CrossRefGoogle Scholar
  118. R.R. Ohs, S.K. De, N.R. Aluru. (2001). Modelling of ionic hydrogel kinetics in buffered solutions, Technical Proceedings of the 2001 International Conference on Modeling and Simulation of Microsystems, 1, 7–10.Google Scholar
  119. O. Okay, S. Durmaz. (2002). Charge density dependence of elastic modulus of strong polyelectrolyte hydrogels. Polymer, 43, 1215–1221.CrossRefGoogle Scholar
  120. O. Okay, S.B. Sariisik. (2000). Swelling behavior of poly(acrylamide-co-sodium acrylate) hydrogels in aqueous salt solutions: Theory versus experiments. European Polymer Journal, 36, 393–399.CrossRefGoogle Scholar
  121. D. Ostrovskii, M. Edvardsson, P. Jacobsson. (2003). Weak polymer-electrolyte interaction revealed by Fermi resonance perturbed Raman bands. Journal of Raman Spectroscopy, 34, 40–49.CrossRefGoogle Scholar
  122. M.M. Ozmen, O. Okay. (2003). Swelling behavior of strong polyelectrolyte poly(N-t-butylacrylamide-co-acrylamide) hydrogels. European Polymer Journal, 39, 877–886.CrossRefGoogle Scholar
  123. V. Ozturk, O. Okay. (2002). Temperature sensitive poly(N-t-butylacrylamide-co-acrylamide) hydrogels synthesis and swelling behavior. Polymer, 43, 5017–5026.CrossRefGoogle Scholar
  124. A. Panda, S.B. Manohar, S. Sabharwal, Y.K. Bhardwaj, A.B. Majali. (2000). Synthesis and swelling characteristics of poly (N-isopropylacrylamide) temperature sensitive hydrogels crosslinked by electron beam irradiation. Radiation Physics and Chemistry, 58, 101–110.CrossRefGoogle Scholar
  125. S. Panyukov, Y. Rabin. (1996). Statistical physics of polymer gels. Physics Reports, 269, 1–131.CrossRefGoogle Scholar
  126. N.A. Peppas. (1986). Hydrogels in Medicine and Pharmacy, Boca Raton, FL: CRC Press.Google Scholar
  127. K. Podual, N.A. Peppas. (2005). Relaxational behavior and swelling-pH master curves of poly[(diethylaminoethyl methacrylate)-graft-(ethylene glycol)] hydrogels. Polymer International, 54, 581–593.CrossRefGoogle Scholar
  128. M.M. Pradas, J.L.G. Ribelles, A.S. Aroca, G.G. Ferrer, J.S. Anton, P. Pissis. (2001). Porous poly(2-hydroxyethyl acrylate) hydrogels. Polymer, 42, 4667–4674.CrossRefGoogle Scholar
  129. X. Qu, A. Wirsen, A.C. Albertsson. (2000). Novel pH-sensitive chitosan hydrogels swelling behavior and states of water. Polymer, 41, 4589–4598.CrossRefGoogle Scholar
  130. J.R. Quintana, N.E. Valderruten, N.E. Katime. (1999). Synthesis and swelling kinetics of poly(dimethylaminoethyl acrylate methyl chloride quaternary-co-itaconic acid) hydrogels. Langmuir, 15, 4728–4730.CrossRefGoogle Scholar
  131. G.V.N. Rathna, P.R. Chatterji. (2001). Swelling kinetics and mechanistic aspects of thermosensitive interpenetrating polymer networks. Journal of Macromolecular Science: Pure and Applied Chemistry, A38, 43–56.CrossRefGoogle Scholar
  132. T. Schmidt, C. Querner, K.F. Arndt. (2003). Characterization methods for radiation crosslinked poly(vinyl methyl ether) hydrogels. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 208, 331–335.CrossRefGoogle Scholar
  133. H. Schott. (1992). Swelling kinetics of polymers. Journal of Macromolecular Science: Physics, B31, 1–9.CrossRefGoogle Scholar
  134. U.P. Schroder, W. Oppermann. (2002). Computer simulation of network formation via crosslinking copolymerization. Macromolecular Theory and Simulations, 6, 151–160.CrossRefGoogle Scholar
  135. M. Sen, O. Güven. (1998). Prediction of swelling behaviour of hydrogels containing diprotic acid moieties. Polymer, 39, 1165–1172.CrossRefGoogle Scholar
  136. M. Sen, O. Güven. (2000). Prediction of the swelling behavior of amphiphilic hydrogels and the determination of average molecular weight between cross-links. Computational and Theoretical Polymer Science, 11, 475–482.CrossRefGoogle Scholar
  137. M. Sen, O. Guven. (2002). Dynamic deswelling studies of poly(N-vinyl-2-pyrrolidone/itaconic acid) hydrogels swollen in water and terbinafine hydrochloride solutions. European Polymer Journal, 38, 751–757.CrossRefGoogle Scholar
  138. B.C. Shin, S.S. Kim, J.K. Ko, J. Jegal, B.M. Lee. (2003). Gradual phase transition of poly(N-isopropylacrylamide-co-acrylic acid) gel induced by electric current. European Polymer Journal, 39, 579–584.CrossRefGoogle Scholar
  139. M.R. Simmons, E.N. Yamasaki, C.S. Patrickios. (2000). Cationic amphiphilic model networks: Synthesis by group transfer polymerization and characterization of the degree of swelling. Macromolecules, 33, 3176–3179.CrossRefGoogle Scholar
  140. Y. Suetoh, M. Shibayama. (2000). Effects of non-uniform solvation on thermal response in poly(N-isopropylacrylamide) gels. Polymer, 41, 505–510.CrossRefGoogle Scholar
  141. T. Tokuhiro. (2001). Temperature dependence of density of polymer gels: 2. Poly[N-(1,3-dioxolan-2-ylmethyl)-N-methyl-acrylamide] networks -water or -alcohol system. Journal of Physical Chemistry B, 105, 11955–11960.CrossRefGoogle Scholar
  142. A.I. Triftaridou, S.C. Hadjiyannakou, M. Vamvakaki, C.S. Patrickios. (2002). Synthesis, characterization, and modelling of cationic amphiphilic model hydrogels: Effects of polymer composition and architecture. Macromolecules, 35, 2506–2513.CrossRefGoogle Scholar
  143. J. Valencia, I.F. Pierola. (2001). Equilibrium swelling properties of poly(N-vinylimidazole-co-sodium styrenesulfonate) hydrogels. European Polymer Journal, 37, 2345–2352.CrossRefGoogle Scholar
  144. J. Valencia, I.F. Pierola. (2002). Swelling kinetics of poly(N-vinylimidazole-co-sodium styrenesulfonate) hydrogels. Journal of Applied Polymer Science, 83, 191–200.CrossRefGoogle Scholar
  145. A.J.M. Valente, A.Y. Polishchuk, V.M.M. Lobo, G. Geuskens. (2002). Diffusion coefficients of lithium chloride and potassium chloride in hydrogel membranes derived from acrylamide. European Polymer Journal, 38, 13–18.CrossRefGoogle Scholar
  146. S. Varghese, A.K. Lele, R.A. Masjelkar. (2000). Designing new thermoreversible gels by molecular tailoring of hydrophilic-hydrophobic interactions. Journal of Physical Chemistry, 112, 3063–3070.CrossRefGoogle Scholar
  147. E.V. Vashuk, E.V. Vorobieva, I.I. Basalyga, N.P. Krutko. (2001). Water-absorbing properties of hydrogels based on polymeric complexes. Materials Research Innovations, 4, 350–352.CrossRefGoogle Scholar
  148. M.S. Vicente, J.C.Y. Gottifredi. (2000). Effect of volume changes due to absorption in polymer membranes. Journal of Membrane Science, 169, 249–254.CrossRefGoogle Scholar
  149. J.S. Vrentas, C.M. Vrentas. (1994). Solvent self-diffusion in rubbery polymer-solvent systems. Macromolecules, 27, 4684–4690.CrossRefGoogle Scholar
  150. T. Wallmersperger, B. Kroplin, J. Holdenried, W. Gulch. (2001). A Coupled Multi-Field-Formulation for Ionic Polymer Gels in Electric Fields. In: Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, Y. Bar-Cohen (Ed.) SPIE Press, 4329, pp. 264–275.Google Scholar
  151. B. Wang, T. Ymaguchi, S. Nakao. (2000). Solvent diffusion in amorphous glassy polymers. Journal of Polymer Science Part B: Polymer Physics, 38, 846–856.CrossRefGoogle Scholar
  152. J.A. White, W.M. Deen. (2002). Agarose-dextran gels as synthetic analogs of glomerular basement membrane water permeability. Biophysical Journal, 82, 2081–2089.CrossRefGoogle Scholar
  153. C.J. Whiting, A.M. Voice, P.D. Olmsted, T.C.B. Mcleish. (2001). Shear modulus of polyelectrolyte gels under electric field. Journal of Physics: Condensed Matter, 13, 1381–1393.CrossRefGoogle Scholar
  154. W. Xue, S. Champ, M.B. Huglin. (2001a). Thermoreversible swelling behaviour of hydrogels based on N-isopropylacrylamide with a zwitterionic comonomer. European Polymer Journal, 37, 869–875.Google Scholar
  155. W. Xue, S. Champ, M.B. Huglin. (2001b). Network and swelling parameters of chemically crosslinked thermoreversible hydrogels. Polymer, 42, 3665–3669.Google Scholar
  156. W. Xue, I.W. Hamley. (2002). Thermoreversible swelling behaviour of hydrogels based on N-isopropylacrylamide with a hydrophobic comonomer. Polymer, 43, 3069–3077.CrossRefGoogle Scholar
  157. L. Yao, S. Krause. (2003). Electromechanical responses of strong acid polymer gels in DC electric fields. Macromolecules, 36, 2055–2065.CrossRefGoogle Scholar
  158. H. Yasunaga, Y. Shirakawa, H. Urakawa, K. Kajiwara. (2002). Dynamic behaviour of water in hydrogel containing hydrophobic side chains as studied by pulse 1H NMR. Journal of Molecular Structure, 602–603, 399–404.CrossRefGoogle Scholar
  159. B. Yildiz, B. Isik, M. Kis. (2002). Thermoresponsive poly(N-isopropylacrylamide-co-acrylamide-co-2-hydroxyethyl methacrylate) hydrogels. Reactive and Functional Polymers, 52, 3–10.CrossRefGoogle Scholar
  160. M.K. Yoo, Y.K. Sung, Y.M. Lee, C.S. Cho. (2000). Effect of polyelectrolyte on the lower critical solution temperature of poly(N-isopropyl acrylamide) in the poly(NIPAAm-co-acrylic acid) hydrogel. Polymer, 41, 5713–5719.CrossRefGoogle Scholar
  161. L. Zha, J. Hu, C. Wang, S. Fu, M. Luo. (2002). The effect of electrolyte on the colloidal properties of poly(N-isopropylacrylamide-co-dimethylaminoethylmethacrylate) microgel latexes. Colloid and Polymer Science, 280, 1116–1121.CrossRefGoogle Scholar
  162. J. Zhang, N.A. Peppas. (2000). Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules, 33, 102–107.CrossRefGoogle Scholar
  163. X.Z. Zhang, D.Q. Wu, C.C. Chu. (2003). Effect of the crosslinking level on the properties of temperature-sensitive poly(N-isopropylacrylamide) hydrogels. Journal of Polymer Science Part B: Polymer Physics, 41, 582–593.CrossRefGoogle Scholar
  164. X.Z. Zhang, R.X. Zhuo. (2000a). Preparation of fast responsive, thermally sensitive poly(N-isopropylacrylamide) gel. European Polymer Journal, 36, 2301–2303.Google Scholar
  165. X.Z. Zhang, R.X. Zhuo. (2000b). Novel synthesis of temperature-sensitive poly(N-isopropylacrylamide) hydrogel with fast deswelling rate. European Polymer Journal, 36, 643–645.Google Scholar
  166. X.Z. Zhang, R.X. Zhuo. (2000c). Synthesis of temperature-sensitive poly(N-isopropylacrylamide) hydrogel with improved Surface Property. Journal of Colloid and Interface Science, 223, 311–313.CrossRefGoogle Scholar
  167. X.Z. Zhang, R.X. Zhuo. (2002). Synthesis, properties of thermosensitive poly(N-isopropylacrylamide-co-methyl methacrylate) hydrogel with rapid response. Materials Letters, 52, 5–9.CrossRefGoogle Scholar
  168. B. Zhao, J.S. Moore. (2001). Fast pH- and ionic strength-responsive hydrogels in microchannels. Langmuir, 17, 4758–4763.CrossRefGoogle Scholar
  169. X. Zhou, Y.C. Hon, S. Sun, A.F.T. Mak. (2002). Numerical simulation of the steady-state deformation of a smart hydrogel under an external electric field. Smart Materials and Structures, 11, 459–467.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hua Li
    • 1
  1. 1.College of Engineering School of Mechanical & Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations