Predicting Performance Properties for Open Systems with KAMI

  • Carlo Ghezzi
  • Giordano Tamburrelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5581)


Modern software systems are built to operate in an open world setting. By this we mean software that is conceived as a dynamically adaptable and evolvable aggregate of components that may change at run time to respond to continuous changes in the external world. Moreover, the software designer may have different degrees of ownership, control, and visibility of the different parts that compose an application. In this scenario, design-time assumptions may be based on knowledge that may have different degrees of accuracy for the different parts of the application and of the external world that interacts with the system. Furthermore, even if initially accurate, they may later change after the system is deployed and running. In this paper we investigate how these characteristics influence the way engineers can deal with performance attributes, such as response time. Following a model-driven approach, we discuss how to use at design time performance models based on Queuing Networks to drive architectural reasoning. We also discuss the possible use of keeping models alive at run time. This enables automatic re-estimation of model parameters to reflect the real behavior of the running system, re-execution of the model, and detection of possible failure, which may trigger a reaction that generates suitable architectural changes. We illustrate our contribution through a running example and numerical simulations that show the effectiveness of the proposed approach.


Source Node Service Center Service Composition Design Time Activity Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Badidi, E., Esmahi, L., Serhani, M.A.: A Queuing Model for Service Selection of Multi-classes QoS-aware Web Services. In: Third IEEE European Conference on Web Services, 2005. ECOWS 2005, pp. 204–213 (2005)Google Scholar
  2. 2.
    Balsamo, S.: Product Form Queueing Networks. In: Reiser, M., Haring, G., Lindemann, C. (eds.) Dagstuhl Seminar 1997. LNCS, vol. 1769, pp. 377–402. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Baresi, L., Di Nitto, E., Ghezzi, C.: Toward open-world software: Issue and challenges. Computer 39(10), 36–43 (2006)CrossRefGoogle Scholar
  4. 4.
    Becker, S., Koziolek, H., Reussner, R.: Model-based performance prediction with the palladio component model. In: WOSP 2007: Proceedings of the 6th International Workshop on Software and Performance, pp. 54–65. ACM, New York (2007)Google Scholar
  5. 5.
    Bertoli, M., Casale, G., Serazzi, G.: The jmt simulator for performance evaluation of non-product-form queueing networks. In: Annual Simulation Symposium, Norfolk,VA, US, pp. 3–10. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  6. 6.
    Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing networks and Markov chains: modeling and performance evaluation with computer science applications. Wiley-Interscience, New York (1998)CrossRefzbMATHGoogle Scholar
  7. 7.
    Buzen, J.P.: Queueing Network Models of Multiprogramming (1971)Google Scholar
  8. 8.
    Buzen, J.P.: Computational algorithms for closed queueing networks with exponential servers. Communications of the ACM 16(9), 527–531 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: QoS-Aware Replanning of Composite Web Services. In: ICWS 2005 Proc (2005)Google Scholar
  10. 10.
    Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of service for workflows and web service processes. Web Semantics: Science, Services and Agents on the World Wide Web 1(3), 281–308 (2004)CrossRefGoogle Scholar
  11. 11.
    Catley, C., Petriu, D.C., Frize, M.: Software Performance Engineering of a Web Services-Based Clinical Decision Support Infrastructure. Software Engineering Notes 29(1), 130–138 (2004)CrossRefGoogle Scholar
  12. 12.
    Chandrasekaran, S., Miller, J.A., Silver, G.S., Arpinar, B., Sheth, A.P.: Performance Analysis and Simulation of Composite Web Services. Electronic Markets 13(2), 120–132 (2003)CrossRefGoogle Scholar
  13. 13.
    Cheung, L., Roshandel, R., Medvidovic, N., Golubchik, L.: Early prediction of software component reliability. In: 30th International Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008, pp. 111–120. ACM Press, New York (2008)Google Scholar
  14. 14.
    D’Ambrogio, A., Bocciarelli, P.: A model-driven approach to describe and predict the performance of composite services. In: WOSP 2007: Proceedings of the 6th international workshop on Software and performance, pp. 78–89. ACM, New York (2007)Google Scholar
  15. 15.
    Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-time adaptation. In: ICSE 2009: The 31th Internationl Conference on Software Engineering, Vancouver, Canada (to appear, 2009),
  16. 16.
    Gallotti, S., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Quality prediction of service compositions through probabilistic model checking. In: Becker, S., Plasil, F., Reussner, R. (eds.) QoSA 2008. LNCS, vol. 5281. Springer, Heidelberg (2008)Google Scholar
  17. 17.
    Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM Systems Journal 42(1), 5–18 (2003)CrossRefGoogle Scholar
  18. 18.
    Gokhale, S.S.: Architecture-based software reliability analysis: Overview and limitations. IEEE Trans. Dependable Sec. Comput. 4(1), 32–40 (2007)CrossRefGoogle Scholar
  19. 19.
    Lam, S.F., Chan, K.H.: Computer capacity planning: theory and practice. Academic Press Professional, Inc., San Diego (1987)zbMATHGoogle Scholar
  20. 20.
    Lazowska, E.D., Zahorjan, J., Graham, G.S., Sevcik, K.C.: Quantitative system performance: computer system analysis using queueing network models. Prentice-Hall, Inc., Upper Saddle River (1984)Google Scholar
  21. 21.
    Litoiu, M.: Migrating to web services: a performance engineering approach. Journal of Software Maintenance and Evolution: Research and Practice 16(1-2), 51–70 (2004)CrossRefGoogle Scholar
  22. 22.
    Marzolla, M., Mirandola, R., Milano, I.: Performance Prediction of Web Service Workflows. In: Overhage, S., Szyperski, C., Reussner, R., Stafford, J.A. (eds.) QoSA 2007. LNCS, vol. 4880, pp. 127–144. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Menascé, D.A.: QoS Issues in Web Services. IEEE Internet Computing, 72–75 (2002)Google Scholar
  24. 24.
    Meservy, T.O., Fenstermacher, K.D.: Transforming software development: an mda road map. Computer 38(9), 52–58 (2005)CrossRefGoogle Scholar
  25. 25.
    Moreno, G.A., Merson, P.: Model-Driven Performance Analysis. In: Becker, S., Plasil, F., Reussner, R. (eds.) QoSA 2008. LNCS, vol. 5281, pp. 135–151. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl, K.: A journey to highly dynamic, self-adaptive service-based applications. Automated Software Engg. 15(3-4), 313–341 (2008)CrossRefGoogle Scholar
  27. 27.
    Papazoglou, M.P., Georgakopoulos, D.: Service-Oriented Computing. Communications of the ACM 46(10), 25–28 (2003)CrossRefGoogle Scholar
  28. 28.
    Apache Lucene Project,
  29. 29.
    Silver, G., Maduko, A., Jafri, R., Miller, J.A., Sheth, A.P.: Modeling and Simulation of Quality of Service for Composite Web Services. In: Proceedings of the 7th World Multiconference on Systemics, Cybernetics and Informatics (2003)Google Scholar
  30. 30.
    Smith, C.U., Williams, L.G.: Performance solutions: a practical guide to creating responsive, scalable software. Addison Wesley Longman Publishing Co., Inc., Redwood City (2002)Google Scholar
  31. 31.
    Song, H.G., Ryu, Y., Chung, T., Jou, W., Lee, K.: Metrics, Methodology, and Tool for Performance-Considered Web Service Composition. In: Yolum, p., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 392–401. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  32. 32.
    Zheng, T., Woodside, M., Litoiu, M.: Performance model estimation and tracking using optimal filters. IEEE Transactions on Software Engineering 34(3), 391–406 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Carlo Ghezzi
    • 1
  • Giordano Tamburrelli
    • 1
  1. 1.Dipartimento di Elettronica e Informazione, Deep-SE GroupPolitecnico di MilanoMilanoItaly

Personalised recommendations