Skip to main content

Laser Heterodyne Interferometry and Polarimetry

  • Chapter
  • First Online:
Laser Heterodyning

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 149))

  • 1247 Accesses

Abstract

In August of 1970, the Hewlett-Packard technical journal announced a new product: a laser heterodyne interferometer system based on Zeeman two-frequency laser [1]. Through past three decades, the system concept became de facto a standard for precise distance measurement systems, and the laser itself has found numerous applications not only in industry but in scientific research as well. Today, Zeeman lasers are available from two manufacturers: Agilent (the Hewlett-Packard lasers) and Wavetronics [2]. Availability of an inexpensive stable and versatile tool such as the Zeeman two-frequency cross-polarized laser inspired invention of new research areas where heterodyne technology provided new solutions to previous problems. Therefore, prior to addressing the subject of the chapter itself, it is necessary to explain the Zeeman laser functionality. The scheme of the laser is outlined in Fig. 5.1.

Phenomenologically, the Zeeman laser is a low-power He–Ne laser with axially applied magnetic field and a feedback for frequency stabilization. In this type of lasers, Zeeman magnetic splitting of emission line creates two independent orthogonally polarized output waves at the wavelength 633nm with frequency split of about several megahertz. It is of a primary importance that the two independent waves are of the same mode structure and travel same paths, experiencing same optical heterogeneities, and therefore, are supposed to have identical wavefronts. Frequency shift between them originates from tiny difference in refraction indices of active medium for the left- and righthand circularly polarized waves due to Zeeman effect. Both the frequency and the amplitude stabilization is performed by comparing intensities of the two waves, traveling inside the laser cavity. These waves, originally circularly polarized inside the cavity, are transformed into linearly polarized waves with the help of a quarter wave plate (QWP) and split into two at the polarizing beam splitter (PBS). Photodetectors PD1 and PD2 measure intensities of the two waves, and the differential signal controls the current through the heating coil, maintaining the length of the laser cavity so as to equalize intensities of the two components. Equal intensities correspond to constant frequency shift between the waves if only magnetic field is constant. Stability of the magnetic field is very important for stability of the frequency. For example, any massive magnetic parts on the optical table, positioned close to the laser, may significantly change its frequency shift.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.M. Burgwald, W.P. Kruger, Hewlett-Packard J 21(12), 14 (1970)

    Google Scholar 

  2. http://www.wavetronics.co.kr

  3. Lasers and Optics User’s Manual, Agilent Technologies, product number 05517–90045 (2002)

    Google Scholar 

  4. J.N. Dukes, G.B. Gordon, Hewlett-Packard J 21(12), 2 (1970)

    Google Scholar 

  5. P. Hariharan, Optical Interferometry, 2nd edn. (Academic Press, London, 2003), Sect. 6.2

    Google Scholar 

  6. G.E. Sommargren, Appl. Optics 20(4), 610 (1981)

    Article  ADS  Google Scholar 

  7. D.B. Dove, T.C. Chieu, Proc. SPIE 1809, 128 (1992)

    Article  ADS  Google Scholar 

  8. H. Fujita, H. Miyashita, H. Nakamura, H. Sano, K. Kimura, H. Nakanishi, H. Takizawa, H. Yamaguchi, T. Ode, Proc. SPIE 2087, 119 (1993)

    Article  ADS  Google Scholar 

  9. A. Callegari, K. Babich, Proc. SPIE 3050, 507 (1997)

    Article  Google Scholar 

  10. W.X. Ding, D.L. Brower, B.H. Deng, T. Yates, Rev. Sci. Instrum. 77, 10F105-3 (2006)

    Google Scholar 

  11. M. Sasaki, K. Hane, S. Okuma, M. Hino, Y. Bessho, Rev. Sci. Instrum. 65, 3697 (1994)

    Article  ADS  Google Scholar 

  12. T. Schuldt, H.J. Kraus, D. Weise, C. Braxmaier, A. Peters, U. Johann, Proc. SPIE 6293, 62930Z-9 (2006)

    Article  Google Scholar 

  13. V. V. Protopopov, S. Cho, K. Kim, S.W. Lee, H. Kim, Rev. Sci. Instrum. 78, 076101 (2007)

    Article  ADS  Google Scholar 

  14. F.S. Chen, J. Appl. Phys. 40, 3389 (1969)

    Article  ADS  Google Scholar 

  15. H.B. Serreze, R.B. Goldner, Appl. Phys. Lett. 22, 626 (1973)

    Article  ADS  Google Scholar 

  16. H.B. Serreze, R.B. Goldner, Rev. Sci. Instrum. 45, 1613 (1974)

    Article  ADS  Google Scholar 

  17. B. Wang, T.C. Oakberg, Rev. Sci. Instrum. 70, 3847 (1999)

    Article  ADS  Google Scholar 

  18. B. Wang, W. Hellman, Rev. Sci. Instrum. 72, 4066 (2001)

    Article  ADS  Google Scholar 

  19. B. Wang, Opt. Eng. 41, 981 (2002)

    Article  ADS  Google Scholar 

  20. B. Wang, Rev. Sci. Instrum. 74, 1386 (2003)

    Article  ADS  Google Scholar 

  21. S.Y. Lee, J.F. Lin, Y.L. Lo, Opt. Las. Eng. 43, 704 (2005)

    Article  Google Scholar 

  22. J. R. Mackey, K. K. Das, S. L. Anna, G. H. McKinley, Meas. Sci. Tech. 10, 946 (1999)

    Article  ADS  Google Scholar 

  23. Y. Nishida, M. Yamanaka, Rev. Sci. Instrum. 72, 2387 (2001)

    Article  ADS  Google Scholar 

  24. H.J. Peng, S.P. Wong, Y.W. Lai, X.H. Liu, H.P. Ho, Rev. Sci. Instrum. 74, 4745 (2003)

    Article  ADS  Google Scholar 

  25. S. Shichijyo, S. Fujii, M. Uchida, K. Yamada, Jpn. J. Appl. Phys. 44, 3272 (2005)

    Article  ADS  Google Scholar 

  26. M. Tsukiji, Proc. Instrum. Meas. Tech. Conf. IMTC/94 3, 1517 (1994)

    Google Scholar 

  27. V.V. Protopopov, S. Cho, K. Kim, S.W. Lee, H. Kim, D. Kim, Rev. Sci. Instrum. 77, 053107 (2006)

    Article  ADS  Google Scholar 

  28. H.-K. Teng, C. Chou, C.-N. Chang, C.-W. Lyu, Y.-C. Huang, Jpn. J. Appl. Phys. 41, 3140 (2002)

    Article  ADS  Google Scholar 

  29. Y.C. Tsai, C.M. Wu, Proc. SPIE 5459, 303 (2004)

    Article  ADS  Google Scholar 

  30. S. Yoon, Y. Lee, K. Cho, Opt. Commun. 161, 182 (1999)

    Article  ADS  Google Scholar 

  31. M. Born, E. Wolf, Principles of Optics, 4th edn. (Pergamon Press, New York, 1968)

    Google Scholar 

  32. D.C. Ghiglia, M.D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998), p. 512

    MATH  Google Scholar 

  33. J. Kerr, Philos. Mag. 3(5), 321 (1877)

    Google Scholar 

  34. J. Kerr, Philos. Mag. 5(5), 161 (1878)

    Google Scholar 

  35. M. Ruane, M. Mansuripur, R. Rosenvold, Appl. Opt. 25(12), 1946 (1986)

    Article  ADS  Google Scholar 

  36. M. Deeter, D. Sarid, IEEE Trans. Magnet. 24(6), 2470 (1988)

    Article  ADS  Google Scholar 

  37. M.R. Freeman, J.F. Smyth, J. Appl. Phys. 79(8), 5898 (1996)

    Article  ADS  Google Scholar 

  38. S. Wakana, T. Nagai, Y. Sakata, H. Sekiguchi, FUJITSU Sci. Technol. J. 37(2), 236 (2001)

    Google Scholar 

  39. A.D. Slepkov, F.A. Hegmann, Y. Zhao, R.R. Tykwinski, K. Kamada, J. Chem. Phys. 116(9), 3834 (2002)

    Article  ADS  Google Scholar 

  40. D. Herman, B. Argyle, IEEE Trans. Magnet. 22(5), 772 (1986)

    Article  ADS  Google Scholar 

  41. Z.J. Yang, M.R. Scheinfein, J. Appl. Phys. 74(11), 6810 (1993)

    Article  ADS  Google Scholar 

  42. G.C. Han, C.K. Ong, T.Y.F. Liew, J. Magnet. Magnet. Mater. 192, 233 (1999)

    Article  ADS  Google Scholar 

  43. C.H. Back, A. Taratorin, J. Heidmann, Journ. Appl. Phys. 86(6), 3377 (1999)

    Article  ADS  Google Scholar 

  44. V. Usov, S. Murphy, L. Seravalli, I.V. Shvets, Rev. Sci. Instrum. 76, 046102 (2005)

    Article  ADS  Google Scholar 

  45. S.W. Meeks, R.D. LeSage, D.S. McMurtrey, P.R. Svedsen, W.C. Tomalty, US Patent 6,751,044 B1 (2004)

    Google Scholar 

  46. V.V. Protopopov, S. Cho, Y. Kwon, S.W. Lee, H. Kim, Opt. Commun. 260, 372 (2006)

    Article  ADS  Google Scholar 

  47. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, 2nd edn. (Pergamon Press, New York, 1984)

    Google Scholar 

  48. W. Voigt, Magneto- und Elektrooptik. Leipzig, B.G. Teubner, 8vo. 8vo., XIV S., 1 B1., 396 S (1908)

    Google Scholar 

  49. P.N. Argyres, Phys. Rev. 97(2), 334 (1955)

    Article  ADS  Google Scholar 

  50. B.E. Argyle, J.G. McCord, J. Appl. Phys. 87, 6487 (2000)

    Article  ADS  Google Scholar 

  51. D. Peterka, A. Enders, G. Haas, K. Kern, Rev. Sci. Instrum. 74, 2744 (2003)

    Article  ADS  Google Scholar 

  52. M. Takezawa, K. Kitajina, Y. Morimoto, J. Yamasaki, J. Appl. Phys. 97, 10F701 (2005)

    Google Scholar 

  53. M.E. Re, M.H. Kryder, J. Appl. Phys. 55, 2245 (1984)

    Article  ADS  Google Scholar 

  54. P. Kasiraj, R.M. Shelby, J.S. Best, D.E. Horne, IEEE Trans. Magnet. 22, 873 (1986)

    Article  Google Scholar 

  55. P. Kasiraj, D.E. Horne, J.S. Best, IEEE Trans. Magnet. 23, 2161 (1987)

    Article  ADS  Google Scholar 

  56. S. Egelkamp, L. Reimer, Meas. Sci. Technol. 1, 79 (1990)

    Article  ADS  Google Scholar 

  57. C.D. Wright, N.A.E. Heyes, W.W. Clegg, J. Appl. Phys. 69, 4942 (1991)

    Article  ADS  Google Scholar 

  58. N.A.E. Heyes, C.D. Wright, W.W. Clegg, J. Appl. Phys. 69, 5322 (1991)

    Article  ADS  Google Scholar 

  59. M. Heidkamp, J.L. Erskine, Rev. Sci. Instrum. 71, 3141 (2000)

    Article  ADS  Google Scholar 

  60. V.V. Protopopov, S.W. Lee, Y. Kwon, S. Cho, H. Kim, Rev. Sci. Instrum. 77, 073104 (2006)

    Article  ADS  Google Scholar 

  61. V.V. Protopopov, K. Kim, C. Choi, K. Bang, W. Lee, C. Kim, Opt. Commun. 281, 2355 (2008)

    Article  ADS  Google Scholar 

  62. X. Niu, N. Jakatdar, J. Bao, C.J. Spanos, IEEE Trans. Semicond. Man. 14(2), 97 (2001)

    Article  Google Scholar 

  63. T. Sahin, C. Collard, S.A. Anderson, A.W. Mak, C.B. Brooks, M.J. Buie, Proc. SPIE 5256, 76 (2003)

    Article  ADS  Google Scholar 

  64. C.J. Raymond, M. Littau, A. Chuprin, S. Ward, Proc.SPIE 5375, 564 (2004)

    Google Scholar 

  65. W. Yang, J. Hu, R. Lowe-Webb, R. Korlahalli, D. Shivaprasad, H. Sasano, W. Liu, D.S.L. Mui, IEEE Trans. Semicon. Man. 17(4), 564 (2004)

    Article  Google Scholar 

  66. A. Gray, J.C. Lam, Proc. SPIE 6349, 63491O (2006)

    Article  ADS  Google Scholar 

  67. I. Pundaleva, D. Nam, H. Han, D. Lee, W. Han, Proc. SPIE 6152, 61520G (2006)

    Article  ADS  Google Scholar 

  68. I. Pundaleva, R. Chalykh, J.W. Lee, S.W. Choi, W. Han, Proc. SPIE 6518, 65180V (2007)

    Article  ADS  Google Scholar 

  69. T. Novikova, A. De Martino, P. Bulkin, Q. Nguyen, B. Drévillon, V. Popov, A. Chumakov, Optics Expr. 15(5), 2033 (2007)

    Article  ADS  Google Scholar 

  70. E. Hecht, Optics, 3rd edn. (Addison-Wesley, New-York, 1998), pp. 327–328

    Google Scholar 

  71. S.A. Kovalenko, Semiconductor physics, Quant. Electron. Optoelectron. 2(3), 13 (1999)

    Google Scholar 

  72. M.G. Moharam, T.K. Gaylord, J. Opt. Soc. Am. 71(7) 811 (1981)

    Article  ADS  Google Scholar 

  73. R. Petit, G. Tayeb, J. Opt. Soc. Am. A 7(9), 1686 (1990)

    Article  ADS  Google Scholar 

  74. Visual Numerics. IMSL. Fortran subroutines for mathematical applications. Math/Library, vol. 1 & 2. Chap. 8, p. 912

    Google Scholar 

  75. V.V. Protopopov, Opt. Commun. 281, 4142 (2008)

    Article  ADS  Google Scholar 

  76. S.M. Rytov, Sov. Phys. JETP 2, 466 (1956)

    Google Scholar 

  77. D.H. Raguin, G.M. Morris, Appl. Opt. 32(14), 2582 (1993)

    Article  ADS  Google Scholar 

  78. J. Wallot, Ann. Physik 60, 734 (1919)

    Article  ADS  Google Scholar 

  79. H.R. Hulme, Proc. R. Soc. (London) A135, 237 (1932)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Protopopov .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Protopopov, V.V. (2009). Laser Heterodyne Interferometry and Polarimetry. In: Laser Heterodyning. Springer Series in Optical Sciences, vol 149. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02338-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02338-5_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02337-8

  • Online ISBN: 978-3-642-02338-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics