Skip to main content

Stability and Hopf Bifurcation for a First-Order Delay Differential Equation with Distributed Delay

  • Chapter
  • First Online:
Complex Time-Delay Systems

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

This class of equations is widely used in many research fields—it can be obtained through the linearization of different nonlinear problems (see, for example, Sect. 8.5)—such as automatic, economic, and, for our purpose, in biological modeling because it can be associated with problems in which it is important to take into account some history of the state variable (e.g., gestation period, cell cycle durations, or incubation time [23, 35]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Adimy, F. Crauste, and S. Ruan. A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia. SIAM J. Appl. Math., 65(4): 1328–1352 2005.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Adimy, F. Crauste, and S. Ruan. Stability and hopf bifurcation in a mathematical model of pluripotent stem cell dynamics. Nonlinear Analysis: Real World Applications, 6: 651–670 2005.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Adimy, F. Crauste, and S. Ruan. Periodic oscillations in leukopoiesis models with two delays. J. Theor. Biol., 242: 288–299 2006.

    Article  MathSciNet  Google Scholar 

  4. R. F. V. Anderson. Geometric and probabilistic stability criteria for delay systems. Math. Biosci., 105: 81–96 1991.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. F. V. Anderson. Intrinsic parameters and stability of differential-delay equations. J. Math. Anal. Appl., 163: 184–199 1992.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. M. Atay. Delayed feedback control near hopf bifurcation. Disc. Cont. Dyn. Syst. Ser. S 1 (2): 197–205 2008.

    Article  MathSciNet  Google Scholar 

  7. E. Beretta, and Y. Kuang. Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J. Math. Anal. 33(5): 1144–1165 2002.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Bernard, J. Bèlair, and M. C. Mackey. Sufficient conditions for stability of linear differential equations with distributed delay. Disc. Cont. Dyn. Syst. Ser., B 1: 233–256 2001.

    Google Scholar 

  9. S. Bernard, J. Bèlair, and M. C. Mackey. Oscillations in cyclical neutropenia: new evidence for origins based on mathematical modeling. J. Theor. Biol., 223: 283–298 2003.

    Article  Google Scholar 

  10. S. Bernard, J. Bèlair, and M. C. Mackey. Bifurcations in a white blood cell production model. Compt. R. Biol. 327: 201–210 2004.

    Article  Google Scholar 

  11. F. G. Boese. The stability chart for the linearized cushing equation with a discrete delay and gamma-distributed delays. J. Math. Anal. Appl., 140: 510–536 1989.

    Article  MathSciNet  MATH  Google Scholar 

  12. F. G. Boese. Stability criteria for second-order dynamical systems involving several time delays. SIAM J. Math. Anal. 26: 1306–1330 1995.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. J. Burns and I. F. Tannock. On the existence of a G 0 phase in the cell cycle. Cell. Tissue Kinet, 19: 321–334 1970.

    Google Scholar 

  14. K. L. Cooke and Z. Grossman. Discrete delay, distributed delay and stability switches. J. Math. Anal. Appl. 86, 592–627 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Crauste. Global asymptotic stability and hopf bifurcation for a blood cell production model. Math. Biosci. Eng., 3(2): 325–346 2006.

    MathSciNet  MATH  Google Scholar 

  16. J. Dieudonné. Foundations of Modern Analysis. Academic Press, New-York, 1960.

    MATH  Google Scholar 

  17. P. Fortin and M. C. Mackey. Periodic chronic myelogenous leukemia: spectral analysis of blood cell counts and etiological implications. Brit. J. Haematol. 104: 336–345 1999.

    Article  Google Scholar 

  18. J. Hale. Theory of Functional Differential Equations. Springer, New York, 1977.

    MATH  Google Scholar 

  19. J. K. Hale, and S. M. Verduyn Lunel. Introduction to Functional Differential Equations. Applied Mathematical Sciences 99, Springer-Verlag, New York, 1993.

    Google Scholar 

  20. N. D. Hayes. Roots of the transcendental equation associated with a certain differential difference equation. J. London Math. Society. 25: 226–232 1950.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Huang and S. Vandewalle. An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays. SIAM J. Sci. Comput., 25 (5): 1608–1632 2004.

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Haurie, D. C. Dale, and M. C. Mackey. Cyclical neutropenia and other periodic hematological diseases: A review of mechanisms and mathematical models. Blood, 92: 2629–2640 1998.

    Google Scholar 

  23. Y. Kuang. Delay Differential Equations with Applications in Population Dynamics. Mathematics in Science and Engineering 191, Academic Press, 1993.

    Google Scholar 

  24. Y. Kuang. Nonoccurrence of stability switching in systems of differential equations with distributed delays. Quart. Appl. Math., LII(3): 569–578 1994.

    MathSciNet  Google Scholar 

  25. N. MacDonalds. Biological Delay Systems: Linear Stability Theory. Cambridge Studies Mathematical Biol. 8, Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  26. M. C. Mackey. A unified hypothesis on the origin of aplastic anaemia and periodic hematopoiesis. Blood, 51: 946–956 1978.

    Google Scholar 

  27. M. C. Mackey. Dynamic hematological disorders of stem cell origin. In: J. G. Vassileva-Popova, and E. V. Jensen, (eds.) Biophysical and Biochemical Information Transfer in Recognition. Plenum Press, New York, 1979.

    Google Scholar 

  28. M. C. Mackey, C. Haurie, and J. Bèlair. Cell replication and control. In: A. Beuter, L. Glass, M. C. Mackey, and M. S. Titcombe (eds.) Nonlinear Dynamics in Physiology and Medicine. Springer, New York 2003.

    Google Scholar 

  29. M. C. Mackey and R. Rudnicki. Global stability in a delayed partial differential equation describing cellular replication. J. Math. Biol., 33: 89–109 1994.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. C. Mackey and R. Rudnicki. A new criterion for the global stability of simultaneous cell replication and maturation processes. J. Math. Biol., 38: 195–219 1999.

    Article  MathSciNet  MATH  Google Scholar 

  31. H. Ozbay, C. Bonnet, and J. Clairambault. Stability Analysis of Systems with Distributed Delays and Application to Hematopoietic Cell Maturation Dynamics. Proceedings of the 47th IEEE Conference on Decision and Control. Cancun, Mexico, December 2008 (to appear).

    Google Scholar 

  32. L. Pujo-Menjouet, S. Bernard, and M. C. Mackey. Long period oscillations in a G 0 model of hematopoietic stem cells. SIAM J. Appl. Dynam. Sys., 4 (2): 312–332 2005.

    Article  MathSciNet  MATH  Google Scholar 

  33. L. Pujo-Menjouet, and M. C. Mackey. Contribution to the study of periodic chronic myelogenous leukemia. C. R. Biologies, 327: 235–244 2004.

    Article  Google Scholar 

  34. S. Ruan. Delay differential equations in single species dynamics. In: O. Arino, M. Hbid, and E. Aitdads (eds.) Delay Differential Equations with Applications. Springer, Berlin 2006.

    Google Scholar 

  35. S. Ruan and J. Wei. Periodic solutions of planar systems with two delays. Proc. Royal Soc. Edinburgh Ser. 129A: 1017–1032 1999.

    MathSciNet  Google Scholar 

  36. Ruan S., Wei J. On the Zeros of Transcendental Functions with Applications to Stability of Delay Differential Equations with Two Delays. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10: 863–874 2003.

    MathSciNet  MATH  Google Scholar 

  37. L. F. Shampine and S. Thompson. Solving DDEs in Matlab. Appl. Numer. Math., 37: 441–458 2001. http://www.radford.edu/thompson/webddes/.

    Article  MathSciNet  MATH  Google Scholar 

  38. X. H. Tang. Asymptotic behavior of a differential equation with distributed delays. J. Math. Anal. Appl., 301: 313–335 2005.

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Wei and S. Ruan. Stability and bifurcation in a neural network model with two delays. Physica D, 130: 255–272 1999.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Crauste .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crauste, F. (2009). Stability and Hopf Bifurcation for a First-Order Delay Differential Equation with Distributed Delay. In: Atay, F. (eds) Complex Time-Delay Systems. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02329-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02329-3_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02328-6

  • Online ISBN: 978-3-642-02329-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics