Skip to main content

Global Convergent Dynamics of Delayed Neural Networks

  • Chapter
  • First Online:
Complex Time-Delay Systems

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Artificial neural networks arise from the research of the configuration and function of the brain. As pointed out in [79], the brain can be regarded as a complex nonlinear parallel information processing system with a concept of neuron as a basic functional unit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for Boltzmann machines. Cognit. Sci., 9: 147–169 1985.

    Article  Google Scholar 

  2. I. Aleksander and H. Morton An Introduction to Neural Computing. Lodon, Chapman & Hall 1990.

    Google Scholar 

  3. J. Andres. Almost-periodic and bounded solutions of Carathèodory differential inclusions. Differential Integral Equations, 12(6): 887–912, 1999.

    MATH  MathSciNet  Google Scholar 

  4. J. P. Aubin and A. Cellina. Differential Inclusions. Berlin, Springer-Verlag, 1984.

    MATH  Google Scholar 

  5. J. P. Aubin and H. Frankowska. Set-valued Analysis. Boston, Birhauser, 1990.

    MATH  Google Scholar 

  6. J. P. Aubin. Viability Theory. Boston, Birhauser, 1991.

    MATH  Google Scholar 

  7. A. Bacciotti, et.al. Discontinuous ordinary differential equations and stabilization. Tesi di Dottorato di Ricerca in Mathematica, Universita degli STUDI di Firenze, 2000.

    Google Scholar 

  8. A. Bacciotti. Generalized solutions of differential inclusions and stability. Ital. J. Pure Appl. Math., 17: 183–192, 2005.

    MATH  MathSciNet  Google Scholar 

  9. J. Belair. Stability in A Model of Delayed Neural Networks. J. Dynam. Differential Equations, 5: 607–623, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Belair, S. A. Campbell, and P. Driessche, Van Den. Stability and delay-induced oscillations in a neural network model. SIAM J. Appl. Math., 56: 245–255, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Berman. Completely positive matrices. New Jersey, World Scientific Publishing, 2003.

    Google Scholar 

  12. R. Bader and W. Kryszewski. On the solution sets of differential inclusions and the periodic problem in Banach space. Nonlinear Analysis, 54: 707–754, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Boyd et al. Linear Matrix Inequalities in System and Control Theory. Philadelphia, SIAM, 1994.

    Google Scholar 

  14. J. Cao. On exponential stability and periodic solution of CNNs with delay. Phys. Lett. A, 267(5–6): 312–318, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Cao. New results concerning exponential stability and periodic solutions of delayed cellular neural networks. Phys. Lett. A, 307: 136–147, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Cao and J. Liang. Boundedness and stability for Cohen-Grossberg neural network with time-varying delays. J. Math. Anal. Appl., 296: 665–685, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  17. Y. J. Cao and Q. H. Wu. A note on stability of analog neural networks with time delays. IEEE Trans. Neural Networks, 7: 1533–1535, 1996.

    Article  Google Scholar 

  18. T. Chen. Convergence of delayed dynamical systems. Neural Proc. Lett., 10(3): 267–271, 1999.

    Article  Google Scholar 

  19. T. Chen. Global exponential stability of delayed hopfield neural networks. Neural Networks, 14(8): 977–980, 2001.

    Article  Google Scholar 

  20. T. Chen and S. Amari. Stability of asymmetric hopfield neural networks. IEEE T. Neural Networks, 12(1): 159–163, 2001.

    Article  Google Scholar 

  21. T. Chen and Y. Bai. Stability of Cohen-Grossberg neural networks with nonnegative periodic solutions. Proceedings of International Joint Conference Neural Networks (IJCNN 2007), 242–247, 2007.

    Google Scholar 

  22. T. Chen and H. Chen. Universal approximation to nonlinear operators by neural networks and its applications to dynamical systems. IEEE Trans. Neural Networks, 6(4): 911–917, 1995.

    Article  Google Scholar 

  23. T. Chen and H. Chen. Approxiamtion capability functions of several variables, nonlinear functionals and operators with radial basis function neural networks. IEEE Trans. Neural Networks, 6(4): 904–910, 1995.

    Article  Google Scholar 

  24. A. Chen and J. Cao. Existence and attractivity of almost periodic solution for cellular neural networks with distributed delays and variable coefficients. Appl. Math. Comp., 134(1): 125–140, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  25. P. P. Civalleri, L. M. Gilli, and L. Pabdolfi. On stability of cellular neural networks with delay. IEEE Trans.Circuits Syst., 40: 157–164, 1993.

    Article  MATH  Google Scholar 

  26. T. Chen and W. Lu. Stability analysis of dynamical neural networks. Proceedings of International Conference Neural Networks and Signal Processing, 14–17, 2003.

    Google Scholar 

  27. T. Chen, W. Lu, and G. R. Chen. Dynamical behaviors of a large class of general delayed neural networks. Neural Comput., 17: 949–968, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  28. T. Chen and L. Rong. Delay-independent stability analysis of Cohen-Grossberg neural networks. Phys. Lett. A, 317: 436–449, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  29. T. Chen and L. Rong. Robust global exponential stability of Cohen-Grossberg neural networks with time delays. IEEE Trans. Neural Networks, 15(1): 203–206, 2004.

    Article  MathSciNet  Google Scholar 

  30. T. Chen and L. Wang. Power-rate stability of dynamical systems with unbounded time-varying delays. IEEE T. CAS-II: Express Briefs, 54(8): 705–709, (2007).

    Article  Google Scholar 

  31. L. O. Chua, C. A. Desoer, and E. S. Kuh. Linear and Nonlinear Circuits. New York, Macgraw-Hill, 1987.

    MATH  Google Scholar 

  32. L. O. Chua and L. Yang. Cellular neural networks: Theory. IEEE Trans.Circuits Syst., 35: 1257–1272, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  33. L. O. Chua and L. Yang. Cellular neural networks: Application. IEEE Trans.Circuits Syst., 35: 1273–1290, 1988.

    Article  MathSciNet  Google Scholar 

  34. F. H. Clarke. Optimization and Nonsmooth Analysis. Pliladelphia, SIAM 1983.

    Google Scholar 

  35. M. A. Cohen and S. Grossberg. Absolute stability and global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans. on Man, Syst. Cybern., 13: 815–826, 1983.

    MATH  MathSciNet  Google Scholar 

  36. G. Cybenko. Approximation by Superpositions of a Sigmoidal Function. Urbana, University of ILLinois, 1988.

    Google Scholar 

  37. G. Cybenko. Approximation by superpositions of a sigmoidal function. Math. Cont., Sig., Sys., 2: 303–314, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  38. B. C. Dhage. Existence of extremal solutions for discontinuous functional integral equations. Appl. Math. Lett., 19: 881–886, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  39. A. F. Filippov. Classical solution of differential equations with multivalued right-hand side. SIAM J. Control, 5(4): 609–621, 1967.

    Article  MATH  MathSciNet  Google Scholar 

  40. M. Forti and P. Nistri. Global convergence of neural networks with discontinuous neuron activations. IEEE Trans. Circuits Syst.I, 50(11): 1421–1435, 2003.

    Article  MathSciNet  Google Scholar 

  41. M. Forti and A. Tesi. New condition for global stability of neural networks with application to linear and quadratic programming problems. IEEE Trans. Circiuts Syst.-1, 42: 354–366, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  42. M. Forti, P. Nistri, and D. Papini. Global exponential stability and global convergence of delayed neural networks with infinite gain. IEEE Trans. Neural Networks, 16(6): 1449–1463, 2005.

    Article  Google Scholar 

  43. M. E. Filippakis and N. S. Papageorgiou. Periodic solutions for differential inclusions in RN. Arch. Math. (Brno), 42: 115–123, 2006.

    MATH  MathSciNet  Google Scholar 

  44. R. E. Gaines and J. L. Mawhin. Coincidence Degree and Nonlinear Differential Equations. Lecture Notes on Mathematics, Berlin, Springer, 568: 10–35, (1977).

    Google Scholar 

  45. S. Grossberg. Biological competition: Decision rules, pattern formation, and oscillations. Proc. Natl. Acd. Sci. USA, 77(4): 2338–2342, 1980.

    Article  MATH  Google Scholar 

  46. S. Grossberg. Nonlinear neural networks: principles, Mechanisms, and architectures. Neural Networks, 1: 17–61, 1988.

    Article  Google Scholar 

  47. G. Haddad. Monotone viable trajectories for functional differential inclusions. J. Diff. Equ., 42: 1–24, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  48. J. K. Hale. Theory of Functional Differential Equations. New York, Springer-Verlag 1977.

    MATH  Google Scholar 

  49. H. Harrer, J. A. Nossek, and R. Stelzl. An analog implementation of discrete-time neural networks. IEEE Trans. Neural Networks, 3: 466–476, 1992.

    Article  Google Scholar 

  50. S. Haykin. Neural Networks: A Comprehensive Foundation. New York, Macmillan Publishing Company, 1994.

    MATH  Google Scholar 

  51. D. O. Hebb. The Orgnization of Behavior: A Neuropsuchological Theory. New York, Wiley, 1949.

    Google Scholar 

  52. R. Hecht-Nielsen. Neurocomputing, Reading. MA, Addison-Wesley, 1990.

    Google Scholar 

  53. J. J. Hopfield. Neurons with graded response have collective computational properties like thoseof of two-stage neurons. Proc. Nat. Acad. Sci -Biol., 81: 3088–3092, 1984.

    Article  Google Scholar 

  54. X. Huang and J. Cao. Almost periodic solution of shunting inhibitory cellular neural networks with time-varying delays. Phys. Lett. A, 314(3): 222–231, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  55. S. Hu and N. S. Papageorgiou. On the existence of perioidic solutions for nonconvex-valued differential inclusions in R N. Proc. Amer. Math. Soc., 123(10): 3043–3050 1995.

    Google Scholar 

  56. J. J. Hopfield, and D. W. Tank. Computing neural circuits: a model. Science, 233: 625–633 1986.

    Article  Google Scholar 

  57. A. G. Ivanov. On the equivalence of differential inclusions and controlled almost periodic systems. (Russian) Differ. Uravn. 33(7): 876–884, 1997; translation in Differ. Equ., 33(7): 879–887,1997.

    MathSciNet  Google Scholar 

  58. M. P. Kennedy and L. O. Chua. Neural networks for nonlinear programming. IEEE Trans. Circuits Syst.-1, 35: 554–562, 1988.

    Article  MathSciNet  Google Scholar 

  59. W. A. Kirk and B. Sims. Handbook of Metric Fixed Point Theory. Berlin, NY, Springer-Verlag, 2001.

    MATH  Google Scholar 

  60. B. M. Levitan and V. V. Zhikov. Almost Periodic Functions and Differential Equations. New York, Cambriadge University Press, 1982.

    MATH  Google Scholar 

  61. H. Lu. On stability of nonlinear continuous-time neural networks with delays. Neural Networks, 13(10): 1135–1144, 2000.

    Article  Google Scholar 

  62. W. Lu and T. Chen. On periodic dynamical systems. Chin. Ann. Math., 25B(4): 455–462, 2004.

    Google Scholar 

  63. W. Lu and T. P. Chen. Dynamical behaviors of Cohen-Grossberg neural networks with discontinuous activation functions. Neural Networks, 18: 231–242, 2005.

    Article  MATH  Google Scholar 

  64. W. Lu and T. Chen. Global exponential stability of almost periodic trajectory of a large class of delayed dynamical systems. Sci. China A: Math., 48(8): 1015–1026, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  65. W. Lu and T. P. Chen. Dynamical Behaviors of delayed neural network systems with discontinuous activation functions. Neural Comput., 18(3): 683–708, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  66. W. Lu and T. Chen. R n+ global stability of Cohen-Grossberg neural network system with nonnegative equilibrium. Neural Networks, 20: 714–722, 2007.

    Article  MATH  Google Scholar 

  67. W. Lu and T. Chen. Almost periodic dynamics of a class of delayed neural networks with discontinuous activations. Neural Comput., 20: 1065–1090, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  68. W. Lu, L. Rong, and T. Chen. Global convergence of delayed neural networks systems. Int. J. Neural Sys., 13(3): 193–204, 2003.

    Article  Google Scholar 

  69. D. Li and P. E. Kloeden. On the dynamics of nonautonomous periodic general dynamical systems and differential inclusions. J. Diff. Equ., 224: 1–38, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  70. X. Liao, C. Li, and K. Wong. Criteria for exponential stability of Cohen-Grossberg neural networks. Neural Networks, 17: 1401–1414, 2004.

    Article  MATH  Google Scholar 

  71. G Li and X. Xue. On the existence of periodic solutions for differential inclusions. J. Math. Anal. Appl., 276: 168–183, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  72. R. K. Miller. Asymptotic behavior of nonlinear delayed-differential equations. J. Differ. Equ., 1: 293–305, 1995.

    Article  Google Scholar 

  73. C. M. Marcus and R. M. Westervelt. Stability of analog neural networks with delay. Phys. Rev. A., 39: 347–359, 1989.

    Google Scholar 

  74. J. M. Mendel and K. S. Fu. Adaptive, Learning, and Pattern Recognition Systems: Theory and Applications. New York, Academic Press, 1970.

    MATH  Google Scholar 

  75. N. Megiddo and M. Kojima. On the existence and uniqueness of solutions in nonlinear complementarity theory. Math. Prog., 12: 110–130, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  76. B. E. Paden and S. S. Sastry. Calculus for computing Filippov’s differential inclusion with application to the variable structure control of robot manipulator. IEEE Trans. Circuits Syst., 34: 73–82, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  77. D. Papini and V. Taddei. Global exponential stability of the periodic solution of the delayed neural networks with discontinuous activations. Phys. Lett. A., 343: 117–128, 2005.

    Article  MATH  Google Scholar 

  78. C. S. Ramòny. Histologie du système nerveux de l’homme et des vertèbrès. Paris: Maloine; Edition Francaise Revue: Tome I (1952); Tome II (1955); Madrid: Consejo Superior de Inverstigaciones Cientificas 2001.

    Google Scholar 

  79. T. Rockafellar and R.J.-B. Wets. Variational Analysis. Berlin Heidelberg, Springer-Verlag, 1998.

    Book  MATH  Google Scholar 

  80. G. V. Smirnov. Weak asymptotic stability at first approximation for periodic differential inclusions. NoDEA, 2: 445–461, 1995.

    Article  MATH  Google Scholar 

  81. L. Wang and X. Zou. Exponential stability of Cohen-Grossberg neural networks. Neural Networks, 15: 415–422, 2002.

    Article  Google Scholar 

  82. K. Yoshida. Functional Analysis. Grundlehren der Mathematicchen Wissenschaften. New York: Springer-Verlag, 1978.

    Google Scholar 

  83. T. Yosizawa. Stability Theory and The Existence of Periodic Solutions and Almost Periodic Solutions. New York, Springer-Verlag, 1975.

    Google Scholar 

  84. V. I. Utkin. Sliding Modes and Their Applications in Variable Structure Systems. Moskow, MIR Publishers, 1978.

    Google Scholar 

  85. J. Zhang and X. Jin. Global stability analysis in delayed hopfield neural models. Neural Networks, 13(7): 745–753, 2000.

    Article  Google Scholar 

  86. Y. Zheng and T. Chen. Global exponential stability of delayed periodic dynamical systems. Phys. Lett. A, 322(5–6): 344–355, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  87. J. Zhou, Z. Liu, and G. Chen. Dynamics of delayed periodic neural networks. Neural Networks, 17(1): 87–101, 2004.

    Article  MATH  Google Scholar 

  88. A. V. Zuev. On periodic solutions of ordinary differential equations with discontinuous right-hand side. Math. Notes, 79(4): 518–527, 2006.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlian Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lu, W., Chen, T. (2009). Global Convergent Dynamics of Delayed Neural Networks. In: Atay, F. (eds) Complex Time-Delay Systems. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02329-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02329-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02328-6

  • Online ISBN: 978-3-642-02329-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics