Skip to main content

Finite Propagation Speeds in Spatially Extended Systems

  • Chapter
  • First Online:
Complex Time-Delay Systems

Part of the book series: Understanding Complex Systems ((UCS))

  • 2078 Accesses

Abstract

In recent decades finite propagation speeds have been observed experimentally in spatially extended systems. For instance, in neural and biological systems they have been found to evoke novel spatio-temporal phenomena [4, 8–10, 12, 15, 21, 22, 24, 26, 28, 29, 37, 39]. This effect may be understood by the similarity of the delay caused by the finite propagation speed and other intrinsic timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Amari. Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybernet., 27:77–87, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  2. F. M. Atay and A. Hutt. Stability and bifurcations in neural fields with finite propagation speed and general connectivity. SIAM J. Appl. Math., 65(2):644–666, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. T. H. Baker and E. Buckwar. Exponential stability in p-th mean of solutions, and of convergent euler-type solutions, of stochastic delay differential equations. J. Comput. Appl. Math., 182(2):4004–427, 2005.

    MathSciNet  Google Scholar 

  4. P. C. Bressloff and S. Coombes. Physics of the extended neuron. Int. J. Mod. Phys. B, 11(20):2343–2392, 1997.

    Article  Google Scholar 

  5. A. A. Budini and M. O. Caceres. Functional characterization of linear delay langevin equations. Phys. Rev. E, 70:046104, 2004.

    Article  Google Scholar 

  6. V. Castets, E. Dulos, J. Boissonade, and P. De Kepper. Experimental-evidence of a sustained standing turing-type non-equilibrium chemical-pattern. Phys. Rev. Lett., 64:2953–2956, 1990.

    Article  Google Scholar 

  7. C. Cattaneo. A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compt. Rend., 247:431–433, 1958.

    MathSciNet  Google Scholar 

  8. S. Coombes. Waves and bumps in neural field theories. Biol. Cybernet., 93:91–108, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Coombes, G. J. Lord, and M. R. Owen. Waves and bumps in neuronal networks with axo-dendritic synaptic interactions. Physica D, 178:219–241, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. M. Crook, G. B. Ermentrout, M. C. Vanier, and J. M. Bower. The role of axonal delays in the synchronization of networks of coupled cortical oscillators. J. Comput. Neurosci., 4:161–172, 1997.

    Article  MATH  Google Scholar 

  11. M. C. Cross and P. C. Hohenberg. Pattern formation outside of equilibrium. Rev. Mod. Phys., 65(3):851–1114, 1993.

    Article  Google Scholar 

  12. G. B. Ermentrout, J. McLeod, and J. Bryce. Existence and uniqueness of travelling waves for a neural network. Proc. Roy. Soc. A, 123(3):461–478, 1993.

    MATH  Google Scholar 

  13. T. D. Frank and P. J. Beek. Stationary solutions of linear stochastic delay differential equations: Applications to biological systems. Phys. Rev. E, 64:021917, 2001.

    Article  Google Scholar 

  14. W. J. Freeman. Mass Action in the Nervous System. Academic Press, New York, 1975.

    Google Scholar 

  15. W. J. Freeman. Characteristics of the synchronization of brain activity imposed by finite conduction velocities of axons. Int. J. Bif. Chaos, 10(10):2307–2322, 2000.

    Article  Google Scholar 

  16. J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, volume 42 of Applied Mathematical Sciences. Springer Verlag, New York, 1983.

    Google Scholar 

  17. S. Guillouzic, I. L’Heureux, and A. Longtin. Small delay approximation of stochastic delay differential equation. Phys. Rev. E, 59(4):3970, 1999.

    Article  Google Scholar 

  18. A. A. Gushchin and U. Kuechler. On stationary solutions of delay differential equations driven by a lèvy process. Stochastic Proc. Appl., 88:195–211, 2000.

    Article  MATH  Google Scholar 

  19. H. Haken. Advanced Synergetics. Springer, Berlin, 1983.

    MATH  Google Scholar 

  20. J. K. Hale and S. M. V. Lunel. Introduction to Functional Differential Equations. Springer, Berlin, 1993.

    MATH  Google Scholar 

  21. A. Hutt and F. M. Atay. Analysis of nonlocal neural fields for both general and gamma-distributed connectivities. Physica D, 203:30–54, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Hutt and F. M. Atay. Effects of distributed transmission speeds on propagating activity in neural populations. Phys. Rev. E, 73:021906, 2006.

    Article  MathSciNet  Google Scholar 

  23. A. Hutt and F. M. Atay. Spontaneous and evoked activity in extended neural populations with gamma-distributed spatial interactions and transmission delay. Chaos, Solitons and Fractals, 32:547–560, 2007.

    Google Scholar 

  24. A. Hutt, M. Bestehorn, and T. Wennekers. Pattern formation in intracortical neuronal fields. Network: Comput. Neural Syst., 14:351–368, 2003.

    Article  Google Scholar 

  25. A. Hutt and T. D. Frank. Critical fluctuations and 1/f -activity of neural fields involving transmission delays. Acta Phys. Pol. A, 108(6):1021, 2005.

    Google Scholar 

  26. M. A. P. Idiart and L. F. Abbott. Propagation of excitation in neural network models. Network: Comp. Neural Sys., 4:285–294, 1993.

    Article  MATH  Google Scholar 

  27. J. D. Jackson. Classical Electrodynamics. Wiley, New York, 3 edition, 1998.

    Google Scholar 

  28. V. K. Jirsa. Connectivity and dynamics of neural information processing. Neuroinformatics, 2(2):183–204, 2004.

    Article  MathSciNet  Google Scholar 

  29. K. H. W. J. ten Tusscher and A. V. Panfilov. Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol. Heart Circ. Physiol., 291:H1088–H1100, 2006.

    Article  Google Scholar 

  30. J. Klafter and I. M. Sokolov. Anomalous diffusion spreads its wings. Physics World, 18(8):29–32, 2005.

    Google Scholar 

  31. C. Koch. Biophysics of Computation. Oxford University Press, Oxford, 1999.

    Google Scholar 

  32. U. Küchler and B. Mensch. Langevin stochastic differential equation extended by a time-delayed term. Stoch. Stoch. Rep., 40:23–42, 1992.

    MATH  Google Scholar 

  33. E. Lazzaro and H. Wilhelmsson. Fast heat pulse propagation in hot plasmas. Physics of plasmas, 5(4):2830–2835, 1998.

    Article  Google Scholar 

  34. M. C. Mackey and I. G. Nechaeva. Solution moment stability in stochastic differential delay equations. Phys. Rev. E, 52:3366–3376, 1995.

    Article  MathSciNet  Google Scholar 

  35. Th. Martin and R. Landauer. Time delay of evanescent electromagnetic waves and the analogy to particle tunneling. Phys. Rev. A, 45:2611–2617, 1992.

    Article  Google Scholar 

  36. R. Metzler and J. Klafter. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339:1, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  37. J. D. Murray. Mathematical Biology. Springer, Berlin, 1989.

    MATH  Google Scholar 

  38. P. L. Nunez. Neocortical Dynamics and Human EEG Rhythms. Oxford University Press, New York- Oxford, 1995.

    Google Scholar 

  39. D. J. Pinto and G. B Ermentrout. Spatially structured activity in synaptically coupled neuronal networks: I. travelling fronts and pulses. SIAM J. Applied Math., 62(1):206–225, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  40. P. A. Robinson, C. J. Rennie, and J. J. Wright. Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E, 56(1):826–840, 1997.

    Article  Google Scholar 

  41. A. M. Turing. The chemical basis of morphogenesis. Philos. Trans. R. Soc. London, 327B:37–72, 1952.

    Google Scholar 

  42. D. Y. Tzou and J. K. Chen. Thermal lagging in random media. J. Thermophys. Heat Transfer, 12:567–574, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Hutt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hutt, A. (2009). Finite Propagation Speeds in Spatially Extended Systems. In: Atay, F. (eds) Complex Time-Delay Systems. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02329-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02329-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02328-6

  • Online ISBN: 978-3-642-02329-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics