Skip to main content

Time-Delayed Feedback Control: From Simple Models to Lasers and Neural Systems

  • Chapter
  • First Online:
Complex Time-Delay Systems

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Over the past decade control of unstable states has evolved into a central issue in applied nonlinear science [1]. This field has various aspects comprising stabilization of unstable periodic orbits embedded in a deterministic chaotic attractor, which is generally referred to as chaos control, stabilization of unstable fixed points (steady states), or control of the coherence and timescales of stochastic motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Schöll and H. G. Schuster (Eds). Handbook of Chaos Control. Wiley-VCH, Weinheim, 2008, second completely revised and enlarged edition.

    Google Scholar 

  2. H. Nijmeijer and A. V. D. Schaft. Nonlinear Dynamical Control Systems. 3rd ed Springer, New York, 1996.

    Google Scholar 

  3. K. Ogata. Modern Control Engineering. Prentice-Hall, New York, 1997.

    Google Scholar 

  4. A. L. Fradkov, I. V. Miroshnik, and V. O. Nikiforov. Nonlinear and Adaptive Control of Complex Systems. Kluwer, Dordrecht, 1999.

    MATH  Google Scholar 

  5. E. Ott, C. Grebogi, and J. A. Yorke. Controlling chaos. Phys. Rev. Lett., 64, 1196, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Pyragas. Continuous control of chaos by self-controlling feedback. Phys. Lett. A, 170, 421, 1992.

    Article  Google Scholar 

  7. D. J. Gauthier. Resource letter: Controlling chaos. Am. J. Phys., 71, 750, 2003.

    Article  Google Scholar 

  8. K. Pyragas. Delayed feedback control of chaos. Phil. Trans. R. Soc. A, 364, 2309, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Franceschini, S. Bose, and E. Schöll. Control of chaotic spatiotemporal spiking by time-delay autosynchronisation. Phys. Rev. E, 60, 5426, 1999.

    Article  Google Scholar 

  10. M. Kim, M. Bertram, M. Pollmann, A. von Oertzen, A. S. Mikhailov, H. H. Rotermund, and G. Ertl. Controlling chemical turbulence by global delayed feedback: Pattern formation in catalytic CO oxidation on Pt(110). Science, 292, 1357, 2001.

    Article  Google Scholar 

  11. O. Beck, A. Amann, E. Schöll, J. E. S. Socolar, and W. Just. Comparison of time-delayed feedback schemes for spatio-temporal control of chaos in a reaction-diffusion system with global coupling. Phys. Rev. E, 66, 016213, 2002.

    Article  Google Scholar 

  12. N. Baba, A. Amann, E. Schöll, and W. Just. Giant improvement of time-delayed feedback control by spatio-temporal filtering. Phys. Rev. Lett., 89, 074101, 2002.

    Article  Google Scholar 

  13. J. Unkelbach, A. Amann, W. Just, and E. Schöll. Time–delay autosynchronization of the spatiotemporal dynamics in resonant tunneling diodes. Phys. Rev. E, 68, 026204, 2003.

    Article  Google Scholar 

  14. J. Schlesner, A. Amann, N. B. Janson, W. Just, and E. Schöll. Self-stabilization of high frequency oscillations in semiconductor superlattices by time–delay autosynchronization. Phys. Rev. E, 68, 066208, 2003.

    Article  Google Scholar 

  15. C. Beta, M. Bertram, A. S. Mikhailov, H. H. Rotermund, and G. Ertl. Controlling turbulence in a surface chemical reaction by time-delay autosynchronization. Phys. Rev. E, 67, 046224, 2003.

    Article  Google Scholar 

  16. C. Beta and A. S. Mikhailov. Controlling spatiotemporal chaos in oscillatory reaction-diffusion systems by time-delay autosynchronization. Physica D, 199, 173, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  17. K. A. Montgomery and M. Silber. Feedback control of travelling wave solutions of the complex Ginzburg-Landau equation. Nonlinearity, 17, 2225, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Schöll, J. Hizanidis, P. Hövel, and G. Stegemann. Pattern formation in semiconductors under the influence of time-delayed feedback control and noise. In: L. Schimansky-Geier, B. Fiedler, J. Kurths, and E. Schöll (eds.), Analysis and control of complex nonlinear processes in physics, chemistry and biology. World Scientific, Singapore, 2007, pp. 135–183.

    Google Scholar 

  19. C. M. Postlethwaite and M. Silber. Stabilizing unstable periodic orbits in the lorenz equations using time-delayed feedback control. Phys. Rev. E, 76, 056214, 2007.

    Article  MathSciNet  Google Scholar 

  20. A. Ahlborn and U. Parlitz. Controlling spatiotemporal chaos using multiple delays. Phys. Rev. E, 75, 65202, 2007.

    Article  Google Scholar 

  21. A. Ahlborn and U. Parlitz. Control and synchronization of spatiotemporal chaos. Phys. Rev. E, 77, 016201, 2008.

    Article  Google Scholar 

  22. M. A. Dahlem, F. M. Schneider, and E. Schöll. Failure of feedback as a putative common mechanism of spreading depolarizations in migraine and stroke. Chaos, 18, 026110, 2008.

    Article  MathSciNet  Google Scholar 

  23. F. M. Schneider, E. Schöll, and M. A. Dahlem. Controlling the onset of traveling pulses in excitable media by nonlocal spatial coupling and time delayed feedback. Chaos, 19, 015110, 2009.

    Article  MathSciNet  Google Scholar 

  24. M. Kehrt, P. Hövel, V. Flunkert, M. A. Dahlem, P. Rodin, and E. Schöll. Stabilization of complex spatio-temporal dynamics near a subcritical Hopf bifurcation by time-delayed feedback. Eur. Phys. J. B, 68, 557, 2009.

    Article  Google Scholar 

  25. Y. N. Kyrychko, K. B. Blyuss, S. J. Hogan, and E. Schöll. Control of spatio-temporal patterns in the Gray-Scott model. Chaos 19, 043126, 2009.

    Google Scholar 

  26. N. B. Janson, A. G. Balanov, and E. Schöll. Delayed feedback as a means of control of noise-induced motion. Phys. Rev. Lett. 93, 010601, 2004.

    Article  Google Scholar 

  27. A. G. Balanov, N. B. Janson, and E. Schöll. Control of noise-induced oscillations by delayed feedback. Physica D, 199, 1, 2004.

    Article  MATH  Google Scholar 

  28. J. Pomplun, A. Amann, and E. Schöll. Mean field approximation of time-delayed feedback control of noise-induced oscillations in the Van der Pol system. Europhys. Lett., 71, 366, 2005.

    Article  MathSciNet  Google Scholar 

  29. N. B. Janson, A. G. Balanov, and E. Schöll. Control of noise-induced dynamics. In: E. Schöll and H. G. Schuster (eds.), Handbook of Chaos Control. Wiley-VCH, Weinheim, 2008, chap. 11, pp. 223–274, second completely revised and enlarged edition.

    Google Scholar 

  30. G. Hu, T. Ditzinger, C. Z. Ning, and H. Haken. Stochastic resonance without external periodic force. Phys. Rev. Lett., 71, 807, 1993.

    Article  Google Scholar 

  31. A. Pikovsky and J. Kurths. Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett., 78, 775, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. García-Ojalvo and J. M. Sancho. Noise in Spatially Extended Systems. Springer, New York, 1999.

    Google Scholar 

  33. C. Masoller. Noise-induced resonance in delayed feedback systems. Phys. Rev. Lett., 88, 034102, 2002.

    Article  Google Scholar 

  34. B. Lindner, J. García-Ojalvo, A. Neiman, and L. Schimansky-Geier. Effects of noise in excitable systems. Phys. Rep., 392, 321, 2004.

    Article  Google Scholar 

  35. F. Sagués, J. M. Sancho, and J. García-Ojalvo. Spatiotemporal order out of noise. Rev. Mod. Phys., 79, 829, 2007.

    Article  Google Scholar 

  36. D. J. Gauthier, D. K. Sukow, H. M. Concannon, and J. E. S. Socolar. Stabilizing unstable periodic orbits in a fast diode resonator using continuous time-delay autosynchronization. Phys. Rev. E, 50, 2343, 1994.

    Article  Google Scholar 

  37. J. N. Blakely, L. Illing, and D. J. Gauthier. Controlling fast chaos in delay dynamical systems. Phys. Rev. Lett., 92, 193901, 2004.

    Article  Google Scholar 

  38. S. Schikora, P. Hövel, H. J. Wünsche, E. Schöll, and F. Henneberger. All-optical noninvasive control of unstable steady states in a semiconductor laser. Phys. Rev. Lett., 97, 213902, 2006.

    Article  Google Scholar 

  39. J. E. S. Socolar, D. W. Sukow, and D. J. Gauthier. Stabilizing unstable periodic orbits in fast dynamical systems. Phys. Rev. E, 50, 3245, 1994.

    Article  Google Scholar 

  40. J. E. S. Socolar and D. J. Gauthier. Analysis and comparison of multiple-delay schemes for controlling unstable fixed points of discrete maps. Phys. Rev. E, 57, 6589, 1998.

    Article  Google Scholar 

  41. I. Harrington and J. E. S. Socolar. Design and robustness of delayed feedback controllers for discrete systems. Phys. Rev. E, 69, 056207, 2004.

    Article  MathSciNet  Google Scholar 

  42. M. E. Bleich and J. E. S. Socolar. Stability of periodic orbits controlled by time-delay feedback. Phys. Lett. A, 210, 87, 1996.

    Article  Google Scholar 

  43. W. Just, T. Bernard, M. Ostheimer, E. Reibold, and H. Benner. Mechanism of time-delayed feedback control. Phys. Rev. Lett., 78, 203, 1997.

    Article  Google Scholar 

  44. H. Nakajima. On analytical properties of delayed feedback control of chaos. Phys. Lett. A, 232, 207, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  45. K. Pyragas. Analytical properties and optimization of time-delayed feedback control. Phys. Rev. E, 66, 26207, 2002.

    Article  Google Scholar 

  46. W. Just, H. Benner, and E. Schöll. Control of chaos by time–delayed feedback: a survey of theoretical and experimental aspects. In: B. Kramer (ed.), Advances in Solid State Physics. Springer, Berlin, 2003, vol. 43, pp. 589–603.

    Google Scholar 

  47. P. Hövel and J. E. S. Socolar. Stability domains for time-delay feedback control with latency. Phys. Rev. E, 68, 036206, 2003.

    Article  Google Scholar 

  48. P. Hövel and E. Schöll. Control of unstable steady states by time-delayed feedback methods. Phys. Rev. E, 72, 046203, 2005.

    Google Scholar 

  49. S. Yanchuk, M. Wolfrum, P. Hövel, and E. Schöll. Control of unstable steady states by long delay feedback. Phys. Rev. E, 74, 026201, 2006.

    Article  MathSciNet  Google Scholar 

  50. T. Dahms, P. Hövel, and E. Schöll. Control of unstable steady states by extended time-delayed feedback. Phys. Rev. E, 76, 056201, 2007.

    Article  MathSciNet  Google Scholar 

  51. A. Amann, E. Schöll, and W. Just. Some basic remarks on eigenmode expansions of time-delay dynamics. Physica A, 373, 191, 2007.

    Article  Google Scholar 

  52. B. Fiedler, V. Flunkert, M. Georgi, P. Hövel, and E. Schöll. Refuting the odd number limitation of time-delayed feedback control. Phys. Rev. Lett., 98, 114101, 2007.

    Article  Google Scholar 

  53. W. Just, B. Fiedler, V. Flunkert, M. Georgi, P. Hövel, and E. Schöll. Beyond odd number limitation: a bifurcation analysis of time-delayed feedback control. Phys. Rev. E, 76, 026210, 2007.

    Article  MathSciNet  Google Scholar 

  54. B. Fiedler, S. Yanchuk, V. Flunkert, P. Hövel, H. J. Wünsche, and E. Schöll. Delay stabilization of rotating waves near fold bifurcation and application to all-optical control of a semiconductor laser. Phys. Rev. E, 77, 066207, 2008.

    Article  MathSciNet  Google Scholar 

  55. A. G. Balanov, N. B. Janson, and E. Schöll. Delayed feedback control of chaos: Bifurcation analysis. Phys. Rev. E, 71, 016222, 2005.

    Article  Google Scholar 

  56. J. Hizanidis, R. Aust, and E. Schöll. Delay-induced multistability near a global bifurcation. Int. J. Bifur. Chaos, 18, 1759, 2008.

    Article  MATH  Google Scholar 

  57. K. Pyragas. Control of chaos via extended delay feedback. Phys. Lett. A, 206, 323, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  58. A. Ahlborn and U. Parlitz. Stabilizing unstable steady states using multiple delay feedback control. Phys. Rev. Lett., 93, 264101, 2004.

    Article  Google Scholar 

  59. A. Ahlborn and U. Parlitz. Controlling dynamical systems using multiple delay feedback control. Phys. Rev. E, 72, 016206, 2005.

    Article  MathSciNet  Google Scholar 

  60. A. Gjurchinovski and V. Urumov. Stabilization of unstable steady states by variable delay feedback control. Europhys. Lett., 84, 40013, 2008.

    Article  Google Scholar 

  61. E. Schöll. Delayed feedback control of chaotic spatio-temporal patterns in semiconductor nanostructures. In: E. Schöll and H. G. Schuster (eds), [1], chap. 24, pp. 533–558, second completely revised and enlarged edition.

    Google Scholar 

  62. E. Schöll. Pattern formation and time-delayed feedback control at the nano-scale. In: G. Radons, B. Rumpf, and H. G. Schuster (eds.), Nonlinear Dynamics of Nanosystems. Wiley-VCH, Weinheim, 2009, pp. 325–367.

    Google Scholar 

  63. A. S. Mikhailov and K. Showalter. Control of waves, patterns and turbulence in chemical systems. Phys. Rep., 425, 79, 2006.

    Article  MathSciNet  Google Scholar 

  64. P. Parmananda, R. Madrigal, M. Rivera, L. Nyikos, I. Z. Kiss, and V. Gáspár. Stabilization of unstable steady states and periodic orbits in an electrochemical system using delayed-feedback control. Phys. Rev. E, 59, 5266, 1999.

    Article  Google Scholar 

  65. P. Parmananda. Tracking fixed-point dynamics in an electrochemical system using delayed-feedback control. Phys. Rev. E, 67, 045202R, 2003.

    Article  Google Scholar 

  66. D. Battogtokh and A. S. Mikhailov. Controlling turbulence in the complex Ginzburg-Landau equation. Physica D, 90, 84, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  67. J. Schlesner, V. Zykov, H. Engel, and E. Schöll. Stabilization of unstable rigid rotation of spiral waves in excitable media. Phys. Rev. E, 74, 046215, 2006.

    Article  Google Scholar 

  68. G. J. E. Santos, J. Escalona, and P. Parmananda. Regulating noise-induced spiking using feedback. Phys. Rev. E, 73, 042102, 2006.

    Article  Google Scholar 

  69. I. Z. Kiss, C. G. Rusin, H. Kori, and J. L. Hudson. Engineering Complex Dynamical Structures: Sequential Patterns and Desynchronization. Science, 316, 1886, 2007.

    Article  MathSciNet  Google Scholar 

  70. Y. Zhai, I. Z. Kiss, and J. L. Hudson. Control of complex dynamics with time-delayed feedback in populations of chemical oscillators: Desynchronization and clustering. Ind. Eng. Chem. Res., 47, 3502, 2008.

    Article  Google Scholar 

  71. M. G. Rosenblum and A. Pikovsky. Controlling synchronization in an ensemble of globally coupled oscillators. Phys. Rev. Lett., 92, 114102, 2004.

    Article  Google Scholar 

  72. O. V. Popovych, C. Hauptmann, and P. A. Tass. Effective desynchronization by nonlinear delayed feedback. Phys. Rev. Lett., 94, 164102, 2005.

    Article  Google Scholar 

  73. K. Hall, D. J. Christini, M. Tremblay, J. J. Collins, L. Glass, and J. Billette. Dynamic control of cardiac alterans. Phys. Rev. Lett., 78, 4518, 1997.

    Article  Google Scholar 

  74. F. M. Atay. Distributed delays facilitate amplitude death of coupled oscillators. Phys. Rev. Lett., 91, 094101, 2003.

    Article  Google Scholar 

  75. H. Haken. Brain Dynamics: Synchronization and Activity Patterns in Pulse-Coupled Neural Nets with Delays and Noise. Springer Verlag GmbH, Berlin, 2006.

    Google Scholar 

  76. K. Pyragas, O. V. Popovych, and P. A. Tass. Controlling synchrony in oscillatory networks with a separate stimulation-registration setup. Europhys. Lett., 80, 40002, 2007.

    Article  Google Scholar 

  77. M. Gassel, E. Glatt, and F. Kaiser. Time-delayed feedback in a net of neural elements: Transitions from oscillatory to excitable dynamics. Fluct. Noise Lett., 7, L225, 2007.

    Article  Google Scholar 

  78. M. Gassel, E. Glatt, and F. Kaiser. Delay-sustained pattern formation in subexcitable media. Phys. Rev. E, 77, 066220, 2008.

    Article  MathSciNet  Google Scholar 

  79. O. D’Huys, R. Vicente, T. Erneux, J. Danckaert, and I. Fischer. Synchronization properties of network motifs: Influence of coupling delay and symmetry. Chaos, 18, 037116, 2008.

    Article  MathSciNet  Google Scholar 

  80. G. C. Sethia, A. Sen, and F. M. Atay. Clustered chimera states in delay-coupled oscillator systems. Phys. Rev. Lett., 100, 144102, 2008.

    Article  Google Scholar 

  81. W. Kinzel, J. Kestler, and I. Kanter. Chaos pass filter: Linear response of synchronized chaotic systems. 2008, http://arxiv.org/abs/0806.4291.

    Google Scholar 

  82. M. Zigzag, M. Butkovski, A. Englert, W. Kinzel, and I. Kanter. Zero-lag synchronization of chaotic units with time-delayed couplings. Europhys. Lett., 85, 60005, 2009.

    Article  Google Scholar 

  83. E. Schöll and K. Pyragas. Tunable semiconductor oscillator based on self-control of chaos in the dynamic Hall effect. Europhys. Lett., 24, 159, 1993.

    Article  Google Scholar 

  84. D. Reznik and E. Schöll. Oscillation modes, transient chaos and its control in a modulation-doped semiconductor double-heterostructure. Z. Phys. B, 91, 309, 1993.

    Article  Google Scholar 

  85. D. P. Cooper and E. Schöll. Tunable real space transfer oscillator by delayed feedback control of chaos. Z. f. Naturforsch., 50a, 117, 1995.

    Google Scholar 

  86. W. Just, S. Popovich, A. Amann, N. Baba, and E. Schöll. Improvement of time–delayed feedback control by periodic modulation: Analytical theory of Floquet mode control scheme. Phys. Rev. E, 67, 026222, 2003.

    Article  Google Scholar 

  87. E. Schöll, A. G. Balanov, N. B. Janson, and A. Neiman. Controlling stochastic oscillations close to a Hopf bifurcation by time-delayed feedback. Stoch. Dyn., 5, 281, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  88. J. Pomplun, A. G. Balanov, and E. Schöll. Long-term correlations in stochastic systems with extended time-delayed feedback. Phys. Rev. E, 75, 040101(R), 2007.

    Article  Google Scholar 

  89. T. Prager, H. P. Lerch, L. Schimansky-Geier, and E. Schöll. Increase of coherence in excitable systems by delayed feedback. J. Phys. A, 40, 11045, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  90. A. Pototsky and N. B. Janson. Correlation theory of delayed feedback in stochastic systems below Andronov-Hopf bifurcation. Phys. Rev. E, 76, 056208, 2007.

    Article  MathSciNet  Google Scholar 

  91. A. Pototsky and N. B. Janson. Excitable systems with noise and delay, with applications to control: Renewal theory approach. Phys. Rev. E, 77, 031113, 2008.

    Article  MathSciNet  Google Scholar 

  92. A. G. Balanov, V. Beato, N. B. Janson, H. Engel, and E. Schöll. Delayed feedback control of noise-induced patterns in excitable media. Phys. Rev. E, 74, 016214, 2006.

    Article  Google Scholar 

  93. B. Hauschildt, N. B. Janson, A. G. Balanov, and E. Schöll. Noise-induced cooperative dynamics and its control in coupled neuron models. Phys. Rev. E, 74, 051906, 2006.

    Article  MathSciNet  Google Scholar 

  94. E. Schöll, G. Hiller, P. Hövel, and M. A. Dahlem. Time-delayed feedback in neurosystems. Phil. Trans. R. Soc. A, 367, 1079, 2009.

    Article  Google Scholar 

  95. V. Flunkert and E. Schöll. Suppressing noise-induced intensity pulsations in semiconductor lasers by means of time-delayed feedback. Phys. Rev. E, 76, 066202, 2007.

    Article  Google Scholar 

  96. J. Hizanidis, A. G. Balanov, A. Amann, and E. Schöll. Noise-induced oscillations and their control in semiconductor superlattices. Int. J. Bifur. Chaos, 16, 1701, 2006.

    Article  MATH  Google Scholar 

  97. J. Hizanidis, A. G. Balanov, A. Amann, and E. Schöll. Noise-induced front motion: signature of a global bifurcation. Phys. Rev. Lett., 96, 244104, 2006.

    Article  Google Scholar 

  98. J. Hizanidis and E. Schöll. Control of noise-induced spatiotemporal patterns in superlattices. phys. stat. sol. (c), 5, 207, 2008.

    Article  Google Scholar 

  99. J. Hizanidis and E. Schöll. Control of coherence resonance in semiconductor superlattices. Phys. Rev. E, 78, 066205, 2008.

    Article  Google Scholar 

  100. G. Stegemann, A. G. Balanov, and E. Schöll. Delayed feedback control of stochastic spatiotemporal dynamics in a resonant tunneling diode. Phys. Rev. E, 73, 016203, 2006.

    Article  Google Scholar 

  101. E. Schöll, N. Majer, and G. Stegemann. Extended time delayed feedback control of stochastic dynamics in a resonant tunneling diode. phys. stat. sol. (c), 5, 194, 2008.

    Article  Google Scholar 

  102. N. Majer and E. Schöll. Resonant control of stochastic spatio-temporal dynamics in a tunnel diode by multiple time delayed feedback. Phys. Rev. E, 79, 011109, 2009.

    Article  Google Scholar 

  103. K. Pyragas, V. Pyragas, I. Z. Kiss, and J. L. Hudson. Stabilizing and tracking unknown steady states of dynamical systems. Phys. Rev. Lett., 89, 244103, 2002.

    Article  Google Scholar 

  104. S. Bielawski, M. Bouazaoui, D. Derozier, and P. Glorieux. Stabilization and characterization of unstable steady states in a laser. Phys. Rev. A, 47, 3276, 1993.

    Article  Google Scholar 

  105. A. Chang, J. C. Bienfang, G. M. Hall, J. R. Gardner, and D. J. Gauthier. Stabilizing unstable steady states using extended time-delay autosynchronisation. Chaos, 8, 782, 1998.

    Article  MATH  Google Scholar 

  106. K. Pyragas, V. Pyragas, I. Z. Kiss, and J. L. Hudson. Adaptive control of unknown unstable steady states of dynamical systems. Phys. Rev. E, 70, 026215, 2004.

    Article  Google Scholar 

  107. E. M. Wright. The linear difference-differential equation with constant coefficients. Proc. R. Soc. Edinburgh, Sect. A: Math. Phys. Sci., 62, 387, 1949.

    Google Scholar 

  108. E. M. Wright. A non-linear difference-differential equation. J. Reine Angew. Math., 194, 66, 1955.

    MathSciNet  MATH  Google Scholar 

  109. R. Bellmann and K. L. Cooke. Differential-Difference Equations. Academic Press, New York, 1963.

    Google Scholar 

  110. J. K. Hale. Functional Differential Equations. Applied Mathematical Sciences Vol. 3, Springer, New York, 1971.

    MATH  Google Scholar 

  111. F. M. Asl and A. G. Ulsoy. Analysis of a system of linear delay differential equations. ASME J. Dyn. Syst., Meas., Control, 125, 215, 2003.

    Article  Google Scholar 

  112. W. Just, E. Reibold, H. Benner, K. Kacperski, P. Fronczak, and J. Holyst. Limits of time-delayed feedback control. Phys. Lett. A, 254, 158, 1999.

    Article  Google Scholar 

  113. S. Yanchuk and M. Wolfrum. Instabilities of equilibria of delay-differential equations with large delay. In: Proc. 5th EUROMECH Nonlinear Dynamics Conference ENOC-2005, Eindhoven, edited by D. H. van Campen, M. D. Lazurko, and W. P. J. M. van den Oever (Eindhoven University of Technology, Eindhoven, Netherlands, 2005), pp. 08–010, eNOC Eindhoven (CD ROM), ISBN 90 386 2667 3.

    Google Scholar 

  114. S. Lepri, G. Giacomelli, A. Politi, and F. T. Arecchi. High-dimensional chaos in delayed dynamical-systems. Physica D, 70, 235, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  115. K. Pyragas and A. Tamaševičius. Experimental control of chaos by delayed self-controlling feedback. Phys. Lett. A, 180, 99, 1993.

    Article  Google Scholar 

  116. S. Bielawski, D. Derozier, and P. Glorieux. Controlling unstable periodic orbits by a delayed continuous feedback. Phys. Rev. E, 49, R971, 1994.

    Article  Google Scholar 

  117. T. Pierre, G. Bonhomme, and A. Atipo. Controlling the chaotic regime of nonlinear ionization waves using time-delay autosynchronisation method. Phys. Rev. Lett., 76, 2290, 1996.

    Article  Google Scholar 

  118. D. W. Sukow, M. E. Bleich, D. J. Gauthier, and J. E. S. Socolar. Controlling chaos in a fast diode resonator using time-delay autosynchronisation: Experimental observations and theoretical analysis. Chaos, 7, 560, 1997.

    Article  Google Scholar 

  119. O. Lüthje, S. Wolff, and G. Pfister. Control of chaotic taylor-couette flow with time-delayed feedback. Phys. Rev. Lett., 86, 1745, 2001.

    Article  Google Scholar 

  120. J. M. Krodkiewski and J. S. Faragher. Stabilization of motion of helicopter rotor blades using delayed feedback - modelling, computer simulation and experimental verification. J. Sound Vib., 234, 591, 2000.

    Article  Google Scholar 

  121. T. Fukuyama, H. Shirahama, and Y. Kawai. Dynamical control of the chaotic state of the current-driven ion acoustic instability in a laboratory plasma using delayed feedback. Phys. Plasmas, 9, 4525, 2002.

    Article  Google Scholar 

  122. C. von Loewenich, H. Benner, and W. Just. Experimental relevance of global properties of time-delayed feedback control. Phys. Rev. Lett., 93, 174101, 2004.

    Article  Google Scholar 

  123. H. Nakajima and Y. Ueda. Limitation of generalized delayed feedback control. Physica D, 111, 143, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  124. I. Harrington and J. E. S. Socolar. Limitation on stabilizing plane waves via time-delay feedback. Phys. Rev. E, 64, 056206, 2001.

    Article  Google Scholar 

  125. K. Pyragas, V. Pyragas, and H. Benner. Delayed feedback control of dynamical systems at subcritical Hopf bifurcation. Phys. Rev. E, 70, 056222, 2004.

    Article  Google Scholar 

  126. V. Pyragas and K. Pyragas. Delayed feedback control of the Lorenz system: An analytical treatment at a subcritical Hopf bifurcation. Phys. Rev. E, 73, 036215, 2006.

    Article  MathSciNet  Google Scholar 

  127. H. G. Schuster and M. B. Stemmler. Control of chaos by oscillating feedback. Phys. Rev. E, 56, 6410, 1997.

    Article  Google Scholar 

  128. H. Nakajima and Y. Ueda. Half-period delayed feedback control for dynamical systems with symmetries. Phys. Rev. E, 58, 1757, 1998.

    Article  Google Scholar 

  129. K. Pyragas. Control of chaos via an unstable delayed feedback controller. Phys. Rev. Lett., 86, 2265, 2001.

    Article  Google Scholar 

  130. B. Fiedler, V. Flunkert, M. Georgi, P. Hövel, and E. Schöll. Beyond the odd number limitation of time-delayed feedback control. In: E. Schöll and H. G. Schuster (eds.), Handbook of Chaos Control. Wiley-VCH, Weinheim, 2008, pp. 73–84, second completely revised and enlarged edition.

    Google Scholar 

  131. O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel, and H. O. Walther. Delay Equations. Springer-Verlag, New York, 1995.

    Google Scholar 

  132. Y. A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer, New York, 1995.

    MATH  Google Scholar 

  133. Z. Gills, C. Iwata, R. Roy, I. B. Schwartz, and I. Triandaf. Tracking unstable steady states: Extending the stability regime of a multimode laser system. Phys. Rev. Lett., 69, 3169, 1992.

    Article  Google Scholar 

  134. A. Ahlborn and U. Parlitz. Chaos control using notch feedback. Phys. Rev. Lett., 96, 034102, 2006.

    Article  Google Scholar 

  135. S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger. Nonlinear dynamics of semiconductor lasers with active optical feedback. Phys. Rev. E, 69, 016206, 2004.

    Article  Google Scholar 

  136. H. J. Wünsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger, E. Wille, H. Erzgräber, M. Peil, W. Elsäßer, and I. Fischer. Synchronization of delay-coupled oscillators: A study of semiconductor lasers. Phys. Rev. Lett., 94, 163901, 2005.

    Article  Google Scholar 

  137. W. Lu and R. G. Harrison. Controlling chaos using continuous interference feedback: proposal for all optical devices. Opti. Commu., 109, 457, 1994.

    Google Scholar 

  138. C. Simmendinger and O. Hess. Controlling delay-induced chaotic behavior of a semiconductor laser with optical feedback. Phys. Lett. A, 216, 97, 1996.

    Article  Google Scholar 

  139. V. Z. Tronciu, H. J. Wünsche, M. Wolfrum, and M. Radziunas. Semiconductor laser under resonant feedback from a Fabry-Perot: Stability of continuous-wave operation. Phys. Rev. E, 73, 046205, 2006.

    Article  Google Scholar 

  140. B. Dahmani, L. Hollberg, and R. Drullinger. Frequency stabilization of semiconductor lasers by resonant optical feedback. Opt. Lett., 12, 876, 1987.

    Article  Google Scholar 

  141. P. Laurent, A. Clairon, and C. Breant. Frequency noise analysis of optically self-locked diode lasers. IEEE J. Quantum Electron., 25, 1131, 1989.

    Article  Google Scholar 

  142. M. Peil, I. Fischer, and W. Elsäßer. Spectral braodband dynamics of seminconductor lasers with resonant short cavities. Phys. Rev. A, 73, 23805, 2006.

    Article  Google Scholar 

  143. H. Erzgräber, B. Krauskopf, D. Lenstra, A. P. A. Fischer, and G. Vemuri. Frequency versus relaxation oscillations in a semiconductor laser with coherent filtered optical feedback. Phys. Rev. E, 73, 055201(R), 2006.

    Google Scholar 

  144. T. Dahms, P. Hövel, and E. Schöll. Stabilizing continuous-wave output in semiconductor lasers by time-delayed feedback. Phys. Rev. E, 78, 056213, 2008.

    Article  Google Scholar 

  145. M. G. Rosenblum and A. Pikovsky. Delayed feedback control of collective synchrony: An approach to suppression of pathological brain rhythms. Phys. Rev. E, 70, 041904, 2004.

    Article  MathSciNet  Google Scholar 

  146. H. J. Wünsche, S. Schikora, and F. Henneberger. Noninvasive control of semiconductor lasers by delayed optical feedback. In: E. Schöll and H. G. Schuster (eds.), Handbook of Chaos Control. Wiley-VCH, Weinheim, 2008, second completely revised and enlarged edition.

    Google Scholar 

  147. R. Lang and K. Kobayashi. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron, 16, 347, 1980.

    Article  Google Scholar 

  148. G. P. Agrawal and G. R. Gray. Effect of phase-conjugate feedback on the noise characteristics of semiconductor-lasers. Phys. Rev. A, 46, 5890, 1992.

    Article  Google Scholar 

  149. P. M. Alsing, V. Kovanis, A. Gavrielides, and T. Erneux. Lang and Kobayashi phase equation. Phys. Rev. A, 53, 4429, 1996.

    Article  Google Scholar 

  150. G. P. Agrawal and N. K. Dutta. Semiconductor Lasers. Van Nostrand Reinhold, New York, 1993.

    Google Scholar 

  151. R. FitzHugh. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J., 1, 445, 1961.

    Article  Google Scholar 

  152. J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line simulating nerve axon. Proc. IRE, 50, 2061, 1962.

    Article  Google Scholar 

  153. P. Hövel, M. A. Dahlem, and E. Schöll. Control of synchronization in coupled neural systems by time-delayed feedback. Int. J. Bifur. Chaos, 2010, in print (arxiv:0809.0819v1).

    Google Scholar 

  154. M. A. Dahlem, G. Hiller, A. Panchuk, and E. Schöll. Dynamics of delay-coupled excitable neural systems. Int. J. Bifur. Chaos, 19, 745, 2009.

    Article  MATH  Google Scholar 

  155. D. Schmitz, S. Schuchmann, A. Fisahn, A. Draguhn, E. H. Buhl, E. Petrasch-Parwez, R. Dermietzel, U. Heinemann, and R. D. Traub. Axo-axonal coupling. a novel mechanism for ultrafast neuronal communication. Neuron, 31, 831, 2001.

    Article  Google Scholar 

  156. D. T. J. Liley and J. J. Wright. Intracortical connectivity of pyramidal and stellate cells: estimates of synaptic densities and coupling symmetry. Network: Comput. Neural Syst., V5, 175, 1994.

    Google Scholar 

  157. R. D. Pinto, P. Varona, A. R. Volkovskii, A. Szücs, H. D. I. Abarbanel, and M. I. Rabinovich. Synchronous behavior of two coupled electronic neurons. Phys. Rev. E, 62, 2644, 2000.

    Article  Google Scholar 

  158. F. F. De-Miguel, M. Vargas-Caballero, and E. García-Pérez. Spread of synaptic potentials through electrical synapses in Retzius neurones of the leech. J. Exp. Biol., 204, 3241, 2001.

    Google Scholar 

  159. N. Buric and D. Todorovic. Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling. Phys. Rev. E, 67, 066222, 2003.

    Article  MathSciNet  Google Scholar 

  160. V. Hadamschek. Brain stimulation techniques via nonlinear delayed neurofeedback based on MEG inverse methods. PhD Thesis, TU Berlin, 2006.

    Google Scholar 

  161. P. Tass. Effective desynchronization with bipolar double-pulse stimulation. Phys. Rev. E, 66, 036226, 2002.

    Article  Google Scholar 

  162. M. G. Rosenblum, A. Pikovsky, and J. Kurths. Synchronization – A universal concept in nonlinear sciences. Cambridge University Press, Cambridge, 2001.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckehard Schöll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schöll, E., Hövel, P., Flunkert, V., Dahlem, M.A. (2009). Time-Delayed Feedback Control: From Simple Models to Lasers and Neural Systems. In: Atay, F. (eds) Complex Time-Delay Systems. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02329-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02329-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02328-6

  • Online ISBN: 978-3-642-02329-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics