Skip to main content

Delay-Induced Stability: From Oscillators to Networks

  • Chapter
  • First Online:

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

To those who have ever dealt with delay equations, the instabilities and oscillatory behavior caused by delays are all too well known. What perhaps not so familiar is that the delays could also have the opposite effect, namely that they could suppress oscillations and stabilize equilibria which would be unstable in the absence of delays. Research in this area is relatively sparse, as stabilization is not a typical or generic effect of time delays and one usually has to hit small regions in parameter spaces to observe it, which of course differ from system to system. The source of delays can also vary; ranging from feedback delays in control systems to communication delays in networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. K. Hale. Linear functional-differential equations with constant coefficients. Contrib. Diff. Eqs., 2:291–319, 1963.

    MathSciNet  Google Scholar 

  2. J. K. Hale. Averaging methods for differential equations with retarded arguments and a small parameter. J. Diff. Eqs., 2:57–73, 1966.

    Article  MATH  MathSciNet  Google Scholar 

  3. S.-N. Chow and J. Mallet-Paret. Integral averaging and bifurcation. J. Diff. Eqs., 26:112–159, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  4. F. M. Atay. Delayed feedback control near Hopf bifurcation. Discrete Continuous Dyn. Syst., S, 1(2):197–205, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  5. F. M. Atay. Van der Pol’s oscillator under delayed feedback. J. Sound Vib., 218(2):333–339, 1998.

    Article  MathSciNet  Google Scholar 

  6. N. Olgac and B. T. Holm-Hansen. A novel active vibration absorption technique: delayed resonator. J. Sound Vib., 176(1):93–104, 1994.

    Article  MATH  Google Scholar 

  7. I. H. Suh and Z. Bien. Proportional minus delay controller. IEEE Trans. Automat. Contr., AC-24:370–372, 1979.

    Article  MathSciNet  Google Scholar 

  8. I. H. Suh and Z. Bien. Use of time-delay actions in the controller design. IEEE Trans. Automat. Contr., AC-25:600–603, 1980.

    Article  Google Scholar 

  9. N. Shanmugathasan and R. D. Johnston. Exploitation of time delays for improved process control. Internat. J. Contr., 48(3):1137–1152, 1988.

    Article  MATH  Google Scholar 

  10. W. H. Kwon, G. W. Lee, and S. W. Kim. Performance improvement using time delays in multivariable controller design. Internat. J. Contr., 52(60):1455–1473, 1990.

    Article  MATH  Google Scholar 

  11. F. M. Atay. Balancing the inverted pendulum using position feedback. Appl. Math. Lett., 12(5):51–56, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  12. F. M. Atay. Delayed-feedback control of oscillations in non-linear planar systems. Internat. J. Contr., 75(5):297–304, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  13. F. M. Atay. Oscillation control in delayed feedback systems. In: F. Colonius and L. Grüne, (eds),. Dynamics, Bifurcations and Control, volume 273 of. Lecture Notes in Control and Information Sciences, pp. 103–116. Springer-Verlag, Berlin, 2002.

    Google Scholar 

  14. J. W. S. Rayleigh.. The Theory of Sound. Dover, New York, 2nd ed., 1945. Originally published in 1877–1878.

    MATH  Google Scholar 

  15. K. Bar-Eli. On the stability of coupled chemical oscillators. Physica D, 14:242–252, 1985.

    Google Scholar 

  16. M.Shiino and M. Frankowicz. Synchronization of infinitely many coupled limit-cycle type oscillators. Phys. Lett. A, 136(3):103–108, 1989.

    Article  MathSciNet  Google Scholar 

  17. R. E. Mirollo and S. H. Strogatz. Amplitude death in an array of limit-cycle oscillators. J. Statist. Phys., 60(1–2):245–262, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  18. D. G. Aronson, G. B. Ermentrout, and N. Kopell. Amplitude response of coupled oscillators. Physica D, 41:403–449, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. V. Ramana Reddy, A. Sen, and G. L. Johnston. Time delay induced death in coupled limit cycle oscillators. Phys. Rev. Lett., 80(23):5109–5112, 1998.

    Article  Google Scholar 

  20. F. M. Atay. Total and partial amplitude death in networks of diffusively coupled oscillators. Physica D, 183(1–2):1–18, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  21. F. M. Atay. Oscillator death in coupled functional differential equations near Hopf bifurcation. J. Diff. Eqs., 221(1):190–209, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  22. F. R. K. Chung.. Spectral Graph Theory. American Mathematical Society, Providence, 1997.

    MATH  Google Scholar 

  23. K. Kaneko (ed).. Theory and applications of coupled map lattices. Wiley, New York, 1993.

    MATH  Google Scholar 

  24. F. M. Atay and Ö. Karabacak. Stability of coupled map networks with delays. SIAM J. Appl. Dyn. Syst., 5(3):508–527, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  25. F. M. Atay. Synchronization and amplitude death in coupled limit cycle oscillators with time delays. Lect. Notes Contr. Inf. Sci., 388:383–389, 2009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatihcan M. Atay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Atay, F.M. (2009). Delay-Induced Stability: From Oscillators to Networks. In: Atay, F. (eds) Complex Time-Delay Systems. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02329-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02329-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02328-6

  • Online ISBN: 978-3-642-02329-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics