Skip to main content

Selective Ensemble under Regularization Framework

  • Conference paper
Multiple Classifier Systems (MCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5519))

Included in the following conference series:

Abstract

An ensemble is generated by training multiple component learners for a same task and then combining them for predictions. It is known that when lots of trained learners are available, it is better to ensemble some instead of all of them. The selection, however, is generally difficult and heuristics are often used. In this paper, we investigate the problem under the regularization framework, and propose a regularized selective ensemble algorithm RSE. In RSE, the selection is reduced to a quadratic programming problem, which has a sparse solution and can be solved efficiently. Since it naturally fits the semi-supervised learning setting, RSE can also exploit unlabeled data to improve the performance. Experimental results show that RSE can generate ensembles with small size but strong generalization ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, E.D., Jensen, B., Sandvik, R., Worsoe, U.: The improvements in mosek version 5. Technical report, The MOSEK Inc. (2007)

    Google Scholar 

  2. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research 7, 2399–2434 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Blake, C., Keogh, E., Merz, C.J.: UCI repository of machine learning databases (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  4. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  Google Scholar 

  5. Breiman, L.: Arcing classifiers. Annals of Statistics 26(3), 801–849 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  7. Castro, P.D., Coelho, G.P., Caetano, M.F., Von Zuben, F.J.: Designing ensembles of fuzzy classification systems: An immune-inspired approach. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 469–482. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Chen, K., Wang, S.: Regularized boost for semi-supervised learning. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems, vol. 20, pp. 281–288. MIT Press, Cambridge (2008)

    Google Scholar 

  9. Coyle, M., Smyth, B.: On the use of selective ensembles for relevance classification in case-based web search. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS, vol. 4106, pp. 370–384. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Demiriz, A., Bennett, K.P., Shawe-Taylor, J.: Linear programming boosting via column generation. Machine Learning 46(1-3), 225–254 (2006)

    MATH  Google Scholar 

  11. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Doherty, D., Freeman, M.A., Kumar, R.: Optimization with matlab and the genetic algorithm and direct search toolbox. Technical report, The MathWorks Inc. (2004)

    Google Scholar 

  13. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Transaction on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)

    Article  Google Scholar 

  15. Kégl, B., Wang, L.: Boosting on manifolds: Adaptive regularization of base classifiers. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 17, pp. 665–672. MIT Press, Cambridge (2005)

    Google Scholar 

  16. Margineantu, D., Dietterich, T.G.: Pruning adaptive boosting. In: Proceedings of the 14th International Conference on Machine Learning, Nashville, TN, pp. 211–218 (1997)

    Google Scholar 

  17. Martínez-Muñoz, G., Suárez, A.: Pruning in ordered bagging ensembles. In: Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, pp. 609–616 (2006)

    Google Scholar 

  18. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  19. Tamon, C., Xiang, J.: On the boosting pruning problem. In: Proceedings of the 11th European Conference on Machine Learning, Barcelona, Spain, pp. 404–412 (2000)

    Google Scholar 

  20. Ting, K.M., Witten, I.H.: Issues in stacked generalization. Journal of Artificial Intelligence Research 10, 271–289 (1999)

    MATH  Google Scholar 

  21. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  22. Zhang, Y., Burer, S., Street, W.N.: Ensemble pruning via semi-definite programming. Journal of Machine Learning Research 7, 1315–1338 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Zhou, Z.-H., Tang, W.: Selective ensemble of decision trees. LNCS (LNAI), vol. 2639, pp. 476–483. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  24. Zhou, Z.-H., Wu, J., Tang, W.: Ensembling neural networks: Many could be better than all. Artificial Intelligence 137(1-2), 239–263 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhu, X.: Semi-supervised learning literature survey. Technical report, Department of Computer Sciences, University of Wisconsin Madison (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, N., Zhou, ZH. (2009). Selective Ensemble under Regularization Framework. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2009. Lecture Notes in Computer Science, vol 5519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02326-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02326-2_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02325-5

  • Online ISBN: 978-3-642-02326-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics