Skip to main content

A Study of Semi-supervised Generative Ensembles

  • Conference paper
Multiple Classifier Systems (MCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5519))

Included in the following conference series:

Abstract

Machine Learning can be divided into two schools of thought: generative model learning and discriminative model learning. While the MCS community has been focused mainly on the latter, our paper is concerned with questions that arise from ensembles of generative models. Generative models provide us with neat ways of thinking about two interesting learning issues: model selection and semi-supervised learning. Preliminary results show that for semi-supervised low-variance generative models, traditional MCS techniques like Bagging and Random Subspace Method (RSM) do not outperform the single classifier approach. However, RSM introduces diversity between base classifiers. This starting point suggests that diversity between base components has to lie within the structure of the base classifier, and not in the dataset, and it highlights the need for novel generative ensemble learning techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhu, X.: Semi-supervised learning literature survey. Technical Report 1530, Computer Sciences, University of Wisconsin-Madison (2005)

    Google Scholar 

  2. Roli, F.: Semi-supervised multiple classifier systems: Background and research directions. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds.) MCS 2005. LNCS, vol. 3541, pp. 1–11. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proc. of the 11th conf. on COLT, pp. 92–100 (1998)

    Google Scholar 

  4. Li, M.: Tri-training: Exploiting unlabeled data using three classifiers. IEEE Trans. on Knowledge and Data Engineering 17(11), 1529–1541 (2005)

    Article  Google Scholar 

  5. Bennett, K.P., Demiriz, A., Maclin, R.: Exploiting unlabeled data in ensemble methods. In: Proc. of the 8th Int. Conf. on KDD, pp. 289–296 (2002)

    Google Scholar 

  6. Leskes, B.: The value of agreement, a new boosting algorithm. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS, vol. 3559, pp. 95–110. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Miller, D., Uyar, S.: A mixture of experts classifier with learning based on both labelled and unlabelled data. In: Proc. of Advances in NIPS, vol. 9, pp. 571–578 (1997)

    Google Scholar 

  8. Buc, F., Grandvalet, Y., Ambroise, C.: Semi-supervised marginboost. In: Proc. of Advances in NIPS, vol. 14 (2002)

    Google Scholar 

  9. Ng, A., Jordan, M.: On generative vs. discriminative classifiers: A comparison of logistic regression and naive bayes. In: Proc. of Advances in NIPS, vol. 15 (2002)

    Google Scholar 

  10. Cozman, F.G., Cohen, I., Cirelo, M.C., et al.: Semi-supervised learning of mixture models. In: 20th International Conference on Machine Learning, pp. 99–106 (2003)

    Google Scholar 

  11. Martínez, C., Fuentes, O.: Face Recognition Using Unlabeled Data. Computación y Sistemas 7(2), 123–129

    Google Scholar 

  12. Balcan, M., Blum, A.: An Augmented PAC Model for Semi-Supervised Learning. In: Chapelle, O., et al. (eds.) Semi-Supervised Learning. The MIT Press, Cambridge (2006)

    Google Scholar 

  13. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. Wiley Press, Chichester (2004)

    Book  MATH  Google Scholar 

  15. Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.M.: Text classification from labeled and unlabeled documents using EM. Machine Learning 39(2/3) (2000)

    Google Scholar 

  16. Yang, Y., Webb, G., et al.: To select or to weigh: A comparative study of model selection and model weighing for spode ensembles. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS, vol. 4212, pp. 533–544. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Brown, G.: A new perspective on information theoretic feature ranking. In: 12th Int. Conf. on Artificial Intelligence and Statistics (2009) (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zanda, M., Brown, G. (2009). A Study of Semi-supervised Generative Ensembles. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2009. Lecture Notes in Computer Science, vol 5519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02326-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02326-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02325-5

  • Online ISBN: 978-3-642-02326-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics