Skip to main content

Neurogene Muskelveränderungen und -erkrankungen

  • Chapter
Pathologie
  • 5404 Accesses

Zusammenfassung

Die Einflüsse des Nervensystems auf den Skelettmuskel sind vielfältig. Heredodegenerative Erkrankungen des peripheren motorischen Neurons mit progressiver "spinaler" oder "neuraler" Muskelatrophie sind zu unterscheiden von nicht-hereditären, traumatischen, entzündlichen u. a. Schädigungen des peripheren motorischen Neurons. Auch Schädigungen des peripheren und zentralen Neurons oder nur des zentralen motorischen Neurons sowie des extrapyramidalmotorischen Systems bzw. übergeordneter Zentren der Tonusregulation bewirken Veränderungen im Muskel. Außerdem bleiben Störungen der sensorischen Afferenz, d. h. der peripheren und zentralen reflektorischen Kontrollmechanismen, nicht ohne Auswirkungen. Umgekehrt führen Muskelfasernekrosen und andere Veränderungen an den Muskelfasern selbst zu Rückwirkungen auf das Nervensystem, insbesondere auf die Nervenendigungen und die sog. terminale und ultraterminale Innervation. Schließlich kommt es bei Regenerations- und Reinnervationsvorgängen zu komplexen funktionellen und strukturellen Wechselwirkungen zwischen Nervensystem und Muskel, die noch nicht in allen Details aufgeklärt sind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 359.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Afifi AK, Rebeiz J, Mire J, Andonian J, Kaloustian VMd (1972) The myopathology of the Prune belly syndrome. J Neurol Sci 15: 153–165

    Article  PubMed  CAS  Google Scholar 

  2. Ashby P, Verrier M (1976) Neurophysiologic changes in hemiplegia. Possible explanation for the initial disparity between muscle tone and tendon reflexes. Neurology 26: 1145–1151

    PubMed  CAS  Google Scholar 

  3. Balaji KC, Patil A, Townes PL, Primack W, Skare J, Hopkins T (2000) Concordant prune belly syndrome in monozygotic twins. Urology (Online) 55: 949

    CAS  Google Scholar 

  4. Barth PG, Ryan MM, Webster RI, Aronica E, Kan A, Ramkema M, Jardine P, Poll-The BT (2008) Rhabdomyolysis in pontocerebellar hypoplasia type 2 (PCH-2). Neuromuscul Disord 18: 52–58

    Article  PubMed  Google Scholar 

  5. Beersiek F, Parks AG, Swash M (1979) Pathogenesis of ano-rectal incontinence. A histometric study of the anal sphincter musculature. J Neurol Sci 42: 111–127

    Article  PubMed  CAS  Google Scholar 

  6. Black JT, Bhatt GP, Dejesus PV, Schotland DL, Rowland LP (1974) Diagnostic accuracy of clinical data, quantitative electromyography and histochemistry in neuromuscular disease. A study of 105 cases. J Neurol Sci 21: 59–70

    Article  PubMed  CAS  Google Scholar 

  7. Bostock H, Sharief MK, Reid G, Murray NM (1995) Axonal ion channel dysfunction in amyotrophic lateral sclerosis. Brain 118: 217–225

    Article  PubMed  Google Scholar 

  8. Brooke MH (1977) A clinican’s view of the neuromusular diseases. Williams & Wilkins, Baltimore

    Google Scholar 

  9. Bullen AJ, Eccles JC, Eccles RM (1960) Interactions between motoneuronesand muscles in respect of the characteristic speed of their responses. J Physiol (Lond) 150: 417–439

    Google Scholar 

  10. Buonanno A, Cheng J, Venepally P, Weis J, Calvo S (1998) Activity-dependent regulation of muscle genes: repressive and stimulatory effects of innervation. Acta Physiol Scand 163: S 17–26

    Article  CAS  Google Scholar 

  11. Crompton DE, Chinnery PF, Fey C et al. (2002) Neuroferritinopathy: a window on the role of iron in neurodegeneration. Blood Cells Mol Dis 29: 522–531

    Article  PubMed  CAS  Google Scholar 

  12. Curtis AR, Fey C, Morris CM et al. (2001) Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet 28: 350–354

    Article  PubMed  CAS  Google Scholar 

  13. Cusco I, Barcelo MJ, del Rio E, Baiget M, Tizzano EF (2004) Detection of novel mutations in the SMN Tudor domain in type I SMA patients. Neurology 63: 146–149

    PubMed  CAS  Google Scholar 

  14. Doyu M, Sobue G, Mukai E, Kachi T, Yasuda T, Mitsuma T, Takahashi A (1992) Severity of X-linked recessive bulbospinal neuronopathy correlates with size of the tandem CAG repeat in androgen receptor gene. Ann Neurol 32: 707–710

    Article  PubMed  CAS  Google Scholar 

  15. Edstrom L (1970) Selective atrophy of red muscle fibres in the quadriceps in long-standing knee-joint dysfunction. Injuries to the anterior cruciate ligament. J Neurol Sci 11: 551–558

    Article  PubMed  CAS  Google Scholar 

  16. Edström L (1970) Selective changes in the sizes of red and white muscle fibres in upper motor lesions and Parkinsonism. J Neurol Sci 11: 537–550

    Article  PubMed  Google Scholar 

  17. Edström L, Grimby L (1986) Effect of exercise on the motor unit. Muscle Nerve 9: 104–126

    Article  PubMed  Google Scholar 

  18. Edström L, Kugelberg E (1968) Histochemical composition, distribution of fibres and fatiguability of single motor units. Anterior tibial muscle of the rat. J Neurol Neurosurg Psychiatry 31: 424–433

    Article  PubMed  Google Scholar 

  19. Eggermann T, Eggermann K, Elbracht M, Zerres K, Rudnik-Schoneborn S (2008) A new splice site mutation in the SMN1 gene causes discrepant results in SMN1 deletion screening approaches. Neuromuscul Disord 18: 146–149

    Article  PubMed  Google Scholar 

  20. Engel AG, Franzini-Armstrong C (1994) Myology. Mc-Graw-Hill, New York

    Google Scholar 

  21. Engel WK (1961) Muscle target fibers, a newly recognized sign of denervation. Nature (Lond) 191: 60–79

    Article  Google Scholar 

  22. Fallahi GH, Sabbaghian M, Khalili M, Parvaneh N, Zenker M, Rezaei N (2011) Novel UBR1 gene mutation in a patient with typical phenotype of Johanson-Blizzard syndrome. Eur J Pediatr 170: 233–235

    Article  PubMed  Google Scholar 

  23. Fidzianska A (1976) Morphological differences between the atrophied small muscle fibres in amyotrophic lateral sclerosis and Werdnig-Hoffmann disease. Acta Neuropathol (Berl) 34: 321–327

    Article  CAS  Google Scholar 

  24. Fujita K, Ito H, Nakano S, Kinoshita Y, Wate R, Kusaka H (2008) Immunohistochemical identification of messenger RNA-related proteins in basophilic inclusions of adult-onset atypical motor neuron disease. Acta Neuropathol 116: 439–445

    Article  PubMed  CAS  Google Scholar 

  25. Gal A, Pentelenyi K, Remenyi V, Pal Z, Csanyi B, Tomory G, Rasko I, Molnar MJ (2009) Novel heteroplasmic mutation in the anticodon stem of mitochondrial tRNA(Lys) associated with dystonia and stroke-like episodes. Acta Neurol Scand 122: 252–256

    Article  PubMed  Google Scholar 

  26. Gilliam TC, Brzustowicz LM, Castilla LH et al. (1990) Genetic homogeneity between acute and chronic forms of spinal muscular atrophy. Nature 345: 823–825

    Article  PubMed  CAS  Google Scholar 

  27. Goebel HH, Zeman W, Pilz H (1975) Significance of muscle biopsies in neuronal ceroid-lipofuscinoses. J Neurol Neurosurg Psychiatry 38: 985–993

    Article  PubMed  CAS  Google Scholar 

  28. Gollnick PD, Armstrong RB, Saltin B, Saubert CWt, Sembrowich WL, Shepherd RE (1973) Effect of training on enzyme activity and fiber composition of human skeletal muscle. J Appl Physiol 34: 107–111

    PubMed  CAS  Google Scholar 

  29. Gutmann E, Hnik P (1962) Denervation studies in research of neurotrohic relationships. In: Gutmann E (ed) The denervated muscle. Publishing House of Czechoslovak Academy of Science, Prague, pp 31–56

    Google Scholar 

  30. Gutmann E, Zelená J (1962) Morphological changes in denervated muscle. In: Gutmann E (ed) The denervated muscle. Publishing House of Czechoslovak Academy of Science, Prague, pp 57–102

    Google Scholar 

  31. Haeri S, Devers PL, Kaiser-Rogers KA, Moylan VJ, Jr., Torchia BS, Horton AL, Wolfe HM, Aylsworth AS (2010) Deletion of hepatocyte nuclear factor-1-beta in an infant with prune belly syndrome. Am J Perinatol 27: 559–563

    Article  PubMed  Google Scholar 

  32. Hamilton MT, Booth FW (2000) Skeletal muscle adaptation to exercise: a century of progress. J Appl Physiol 88: 327–331

    PubMed  CAS  Google Scholar 

  33. Jackson M, Al-Chalabi A, Enayat ZE, Chioza B, Leigh PN, Morrison KE (1997) Copper/zinc superoxide dismutase 1 and sporadic amyotrophic lateral sclerosis: analysis of 155 cases and identification of a novel insertion mutation. Ann Neurol 42: 803–807

    Article  PubMed  CAS  Google Scholar 

  34. Jennekens FG, Meijer AE, Bethlem J, Van Wijngaarden GK (1974) Fibre hybrids in type groups. An investigation of human muscle biopsies. J Neurol Sci 23: 337–352

    Article  PubMed  CAS  Google Scholar 

  35. Joutel A, Favrole P, Labauge P et al. (2001) Skin biopsy immunostaining with a Notch3 monoclonal antibody for CADASIL diagnosis. Lancet 358: 2049–2051

    Article  PubMed  CAS  Google Scholar 

  36. Kabakus N, Serhatlioglu S, Akfirat M, Kazez A, Aydinoglu H, Ozercan I, Aygun AD (2000) Prune-belly syndrome associated with extra-abdominal abnormalities in a 7-year-old boy. Turk J Pediatr 42: 158–161

    PubMed  CAS  Google Scholar 

  37. Karpati G, Engel WK (1968) Correlative histochemical study of skeletal muscle after suprasegmental denervation, peripheral nerve section, and skeletal fixation. Neurology 18: 681–692

    PubMed  CAS  Google Scholar 

  38. Kerkhoff H, Hassan SM, Troost D, Van Etten RW, Veldman H, Jennekens FG (1994) Insulin-like and fibroblast growth factors in spinal cords, nerve roots and skeletal muscle of human controls and patients with amyotrophic lateral sclerosis. Acta Neuropathol (Berl) 87: 411–421

    Article  CAS  Google Scholar 

  39. Koskinen SO, Kjaer M, Mohr T, Sorensen FB, Suuronen T, Takala TE (2000) Type IV collagen and its degradation in paralyzed human muscle: effect of functional electrical stimulation. Muscle Nerve 23: 580–589

    Article  PubMed  CAS  Google Scholar 

  40. Kurztke JF (1982) Epidemiologie of amyotrophic lateralsclerosis. In: Rowland LP (ed) Human motor neuron disease. Raven, New York, pp 281–302

    Google Scholar 

  41. Lorson CL, Strasswimmer J, Yao JM et al. (1998) SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet 19: 63–66

    Article  PubMed  CAS  Google Scholar 

  42. Mancuso M, Davidzon G, Kurlan RM, Tawil R, Bonilla E, Di Mauro S, Powers JM (2005) Hereditary ferritinopathy: a novel mutation, its cellular pathology, and pathogenetic insights. J Neuropathol Exp Neurol 64: 280–294

    PubMed  CAS  Google Scholar 

  43. Matsuura T, Demura T, Aimoto Y, Mizuno T, Moriwaka F, Tashiro K (1992) Androgen receptor abnormality in X-linked spinal and bulbar muscular atrophy. Neurology 42: 1724–1726

    PubMed  CAS  Google Scholar 

  44. McComas AJ (1977) Neuromuscular function and disorders. Butterworths, London Boston

    Google Scholar 

  45. Meltzer HY, McBride E, Poppei RW (1973) Rod (nemaline) bodies in the skeletal muscle of an acute schizophrenic patient. Neurology 23: 769–780

    PubMed  CAS  Google Scholar 

  46. Meltzer HY, Rastogi S, Ellison J (1976) Quantitative histochemical evaluation of normal human skeletal muscle. Neurology 26: 849–852

    PubMed  CAS  Google Scholar 

  47. Mittelbach F (1966) Die Begleitmyopathie bei neurogenen Atrophien. Springer, Berlin Heidelberg New York

    Google Scholar 

  48. Müller U (2009) The monogenic primary dystonias. Brain 132: 2005–2025

    Article  PubMed  Google Scholar 

  49. Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst 10: 229–258

    Article  PubMed  Google Scholar 

  50. Nix WA, Reichmann H, Schröder MJ (1985) Influence of direct low frequency stimulation on contractile properties of denervated fast-twitch rabbit muscle. Pflugers Arch 405: 141–147

    Article  PubMed  CAS  Google Scholar 

  51. Patten BM, Zito G, Harati Y (1979) Histologic findings in motor neuron disease. Relation to clinically determined activity, duration, and severity of disease. Arch Neurol 36: 560–564

    PubMed  CAS  Google Scholar 

  52. Pellegrino C, Franzini C (1963) An elctron microscope study of denervation atrophy inred and white skeletal muscle fibers. J Cell Biol 17: 327–349

    Article  PubMed  CAS  Google Scholar 

  53. Pihko H, Lehtinen I, Tikkanen H, Harkonen M, Rapola J, Lamminen A, Sahlman A, Somer H (1993) Progressive unilateral hypertrophic myopathy: a case study [see comments]. Muscle Nerve 16: 63–68

    Article  PubMed  CAS  Google Scholar 

  54. Pongratz D (1976) Differentialdiagnose der Erkrankungen der Skelettmuskulatur an Hand von Muskelbiopsien. Enzymhistochemische und histometrische Untersuchungen zur besonderen Vulnerabilität der Typ-II-Fasern. Thieme, Stuttgart

    Google Scholar 

  55. Rezaei N, Sabbaghian M, Liu Z, Zenker M (2011) Eponym: Johanson-Blizzard syndrome. Eur J Pediatr 170: 179–183

    Article  PubMed  Google Scholar 

  56. Rorke LB (1992) Anatomical features of the developing brain implicated in pathogenesis of hypoxic-ischemic injury. Brain Pathol 2: 211–221

    Article  PubMed  CAS  Google Scholar 

  57. Rouleau GA, Clark AW, Rooke K et al. (1996) SOD1 mutation is associated with accumulation of neurofilaments in amyotrophic lateral sclerosis. Ann Neurol 39: 128–131

    Article  PubMed  CAS  Google Scholar 

  58. Rubinstein N, Mabuchi K, Pepe F, Salmons S, Gergely J, Sreter F (1978) Use of type-specific antimyosins to demonstrate the transformation of individual fibers in chronically stimulated rabbit fast muscles. J Cell Biol 79: 252–261

    Article  PubMed  CAS  Google Scholar 

  59. Ruchoux MM, Guerouaou D, Vandenhaute B, Pruvo JP, Vermersch P, Leys D (1995) Systemic vascular smooth muscle cell impairment in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Acta Neuropathol (Berl) 89: 500–512

    Article  CAS  Google Scholar 

  60. Ruchoux MM, Maurage CA (1998) Endothelial changes in muscle and skin biopsies in patients with CADASIL. Neuropathol Appl Neurobiol 24: 60–65

    Article  PubMed  CAS  Google Scholar 

  61. Salmons S, Vrbova G (1969) The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J Physiol (Lond) 201: 535–549

    CAS  Google Scholar 

  62. Scaglia F (2010) The role of mitochondrial dysfunction in psychiatric disease. Dev Disabil Res Rev 16: 136–143

    Article  PubMed  Google Scholar 

  63. Scharf JM, Endrizzi MG, Wetter A et al. (1998) Identification of a candidate modifying gene for spinal muscular. Nat Genet 20: 83–86

    Article  PubMed  CAS  Google Scholar 

  64. Schotland DL (1969) An electron microscopic study of target fibers, target-like fibers and related abnormalities in human muscle. J Neuropathol Exp Neurol 28: 214–228

    Article  PubMed  CAS  Google Scholar 

  65. Schröder JM (2005) Ferritinopathy: diagnosis by muscle or nerve biopsy, with a note on other nuclear inclusion body diseases. Acta Neuropathol (Berl) 109: 109–114

    Article  Google Scholar 

  66. Schröder JM (1982) Pathologie der Muskulatur. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  67. Schröder JM (1998) Recommendations for the examination of peripheral nerve biopsies. Virchows Arch 432: 199–205

    Article  PubMed  Google Scholar 

  68. Schröder JM, Kramer KG, Hopf HC (1985) Granular nuclear inclusion body disease: fine structure of tibial muscle and sural nerve. Muscle Nerve 8: 52–59

    Article  PubMed  Google Scholar 

  69. Schröder JM, Sellhaus B, Jörg J (1995) Identification of the characteristic vascular changes in a sural nerve biopsy of a case with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADA-SIL). Acta Neuropathol (Berl) 89: 116–121

    Article  Google Scholar 

  70. Schröder JM, Züchner S, Dichgans M, Nagy Z, Molnar MJ (2005) Peripheral nerve and skeletal muscle involvement in CADASIL. Acta Neuropathol (Berl) 110: 587–599

    Article  Google Scholar 

  71. Shaw CE, Enayat ZE, Chioza BA, Al-Chalabi A, Radunovic A, Powell JF, Leigh PN (1998) Mutations in all five exons of SOD-1 may cause ALS. Ann Neurol 43: 390–394

    Article  PubMed  CAS  Google Scholar 

  72. Shimada K, Hosokawa S, Tohda A, Matsumoto F, Johnin K (2000) Histology of the fetal prune belly syndrome with reference to the efficacy of prenatal decompression. Int J Urol 7: 161–166

    Article  PubMed  CAS  Google Scholar 

  73. Shimada N, Sobue G, Doyu M et al. (1995) X-linked recessive bulbospinal neuronopathy: clinical phenotypes and CAG repeat size in androgen receptor gene. Muscle Nerve 18: 1378–1384

    Article  PubMed  CAS  Google Scholar 

  74. Simic G (2008) Pathogenesis of proximal autosomal recessive spinal muscular atrophy. Acta Neuropathol 116: 223–234

    Article  PubMed  CAS  Google Scholar 

  75. Smith RG, Kimura F, Harati Y, McKinley K, Stefani E, Appel SH (1995) Altered muscle calcium channel binding kinetics in autoimmune motoneuron disease. Muscle Nerve 18: 620–627

    Article  PubMed  CAS  Google Scholar 

  76. Sorenson EJ, Daube JR, Windebank AJ (2006) Electrophysiological findings in a cohort of old polio survivors. J Peripher Nerv Syst 11: 241–246

    Article  PubMed  Google Scholar 

  77. Sorenson EJ, Daube JR, Windebank AJ (2006) Motor unit number estimates correlate with strength in polio survivors. Muscle Nerve 34: 608–613

    Article  PubMed  Google Scholar 

  78. Staudte HW, Brussatis F (1977) Selective changes in size and distribution of fibre types in vastus muscle from cases of different knee joint affections. Z Rheumatol 36: 143–160

    PubMed  CAS  Google Scholar 

  79. Stonnington HH, Engel AG (1973) Normal and denervated muscle. A morphometric study of fine structure. Neurology 23: 714–724

    PubMed  CAS  Google Scholar 

  80. Talmadge RJ, Roy RR, Edgerton VR (1999) Persistence of hybrid fibers in rat soleus after spinal cord transection. Anat Rec 255: 188–201

    Article  PubMed  CAS  Google Scholar 

  81. Thomas PK, Marques W Jr, Davis MB et al. (1997) The phenotypic manifestations of chromosome 17p11.2 duplication. Brain 120: 465–478

    Article  PubMed  Google Scholar 

  82. Tomé FM, Fardeau M (1976) Ultrastructural study of a muscle biopsy in a case of GM1 gangliosidosis type I. Pathol Eur 11: 15–25

    PubMed  Google Scholar 

  83. Tomé FM, Fardeau M, Lenoir G (1977) Ultrastructure of muscle and sensory nerve in Fabry’s disease. Acta Neuropathol (Berl) 38: 187–194

    Article  Google Scholar 

  84. Tournier-Lasserve E, Joutel A, Melki J et al. (1993) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nat Genet 3: 256–259

    Article  PubMed  CAS  Google Scholar 

  85. Towfighi J, Marks K, Palmer E, Vannucci R (1979) Mobius syndrome. Neuropathologic observations. Acta Neuropathol (Berl) 48: 11–17

    Article  CAS  Google Scholar 

  86. Trotti D, Rolfs A, Danbolt NC, Brown Jr. RH, Hediger MA (1999) SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nat Neurosci 2: 427–433

    Article  PubMed  CAS  Google Scholar 

  87. Uncini A, Di Muzio A, Chiavaroli F et al. (1994) Hereditary motor and sensory neuropathy with calf hypertrophy is associated with 17p11.2 duplication. Ann Neurol 35: 552–558

    Article  PubMed  CAS  Google Scholar 

  88. Vidal R, Ghetti B, Takao M et al. (2004) Intracellular ferritin accumulation in neural and extraneural tissue characterizes a neurodegenerative disease associated with a mutation in the ferritin light polypeptide gene. J Neuropathol Exp Neurol 63: 363–380

    PubMed  CAS  Google Scholar 

  89. Wakabayashi K, Mori F, Tanji K, Orimo S, Takahashi H (2010) Involvement of the peripheral nervous system in synucleinopathies, tauopathies and other neurodegenerative proteinopathies of the brain. Acta Neuropathol 120: 1–12

    Article  PubMed  Google Scholar 

  90. Wang CH, Carter TA, Das K, Xu J, Ross BM, Penchaszadeh GK, Gilliam TC (1997) Extensive DNA deletion associated with severe disease alleles on spinal muscular atrophy homologues. Ann Neurol 42: 41–49

    Article  PubMed  CAS  Google Scholar 

  91. Weis J (1994) Jun, Fos, MyoD1, and myogenin proteins are increased in skeletal muscle fiber nuclei after denervation. Acta Neuropathol 87: 63–70

    Article  PubMed  CAS  Google Scholar 

  92. Weis J, Nikolin S, Nolte K (2009) Neurogene Muskelatrophien und selektive Muskelfaseratrophien: Wegweisende Befunde in der Biopsiediagnostik neuromuskulärer Erkrankungen. Pathologe 30: 379–383

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schröder, J. (2012). Neurogene Muskelveränderungen und -erkrankungen. In: Klöppel, G., Kreipe, H., Remmele, W., Paulus, W., Schröder, J. (eds) Pathologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02324-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02324-8_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02323-1

  • Online ISBN: 978-3-642-02324-8

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics