Skip to main content

Kongenitale Myopathien

  • Chapter
Pathologie
  • 5412 Accesses

Zusammenfassung

Die kongenitalen Myopathien sind eine heterogene Gruppe neuromuskulärer Krankheiten, die auf der Grundlage der überwiegenden pathologischen Veränderungen in der Muskelbiopsie (z. B. Kernstellungsanomalien, Nemalin-Stäbchen, Cores u. a.) in verschiedene Untergruppen unterteilt werden. Sie sind in der Regel wenig progressiv, doch gibt es Ausnahmen mit eindeutiger und manchmal relativ rascher Progredienz. Bei gleichem Genotyp, sogar bei identischer Mutation, kann es stark unterschiedliche klinische Phänotypen geben (z. B. bei der mitochondrial vererbten typischen MELAS-Mutation), andererseits können klinisch gleichartige Krankheitsbilder auf unterschiedliche Gene zurückgeführt werden (z. B. bei der Nemalin-Myopathie). Zu differenzieren sind: Myopathien mit Kern- oder Kernstellungsanomalien, myofibrilläre Myopathien, kongenitale Fasertypendisproportionen, mitochondriale Myopathien, myopathien mit tubulären Aggregaten, Myopathien mit besonderen feinstrukturellen Veränderungen, die Hypertrophia musculorum vera, kongenitale Myopathien mit fataler Kardiomyopathie, Myopathie mit minimalen Veränderungen ("minimal change myopathy") u. a.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 359.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Agrawal PB, Greenleaf RS, Tomczak KK et al. (2007) Nemaline myopathy with minicores caused by mutation of the CFL2 gene encoding the skeletal muscle actin-binding protein, cofilin-2. Am J Hum Genet 80: 162–167

    Article  PubMed  CAS  Google Scholar 

  2. Allamand V, Richard P, Lescure A et al. (2006) A single homozygous point mutation in a 3’untranslated region motif of selenoprotein N mRNA causes SEPN1-related myopathy. EMBO Rep 7: 450–454

    PubMed  CAS  Google Scholar 

  3. Alonso-Losada G, Cimas I, Pego R, La Torre P, Teijeira S, Navarro C (1998) Isolated progressive muscle weakness with tubular aggregates. Clin Neuropathol 17: 50–54

    PubMed  CAS  Google Scholar 

  4. Amthor H, Macharia R, Navarrete R et al. (2007) Lack of myostatin results in excessive muscle growth but impaired force generation. Proc Natl Acad Sci USA 104: 1835–1840

    Article  PubMed  CAS  Google Scholar 

  5. Amthor H, Otto A, Vulin A et al. (2009) Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity. Proc Natl Acad Sci USA 106: 7479–7484

    Article  PubMed  CAS  Google Scholar 

  6. Anttonen AK, Mahjneh I, Hamalainen RH et al. (2005) The gene disrupted in Marinesco-Sjogren syndrome encodes SIL1, an HSPA5 cochaperone. Nat Genet 37: 1309–1311

    Article  PubMed  CAS  Google Scholar 

  7. Askanas V, Engel WK, Reddy NB et al. (1979) X-linked recessive congenital muscle fiber hypotrophy with central nuclei: abnormalities of growth and adenylate cyclase in muscle tissue cultures. Arch Neurol 36: 604–609

    PubMed  CAS  Google Scholar 

  8. Baraibar MA, Muhoberac BB, Garringer HJ, Hurley TD, Vidal R (2010) Unraveling of the E-helices and disruption of 4-fold pores are associated with iron mishandling in a mutant ferritin causing neurodegeneration. J Biol Chem 285: 1950–1956

    Article  PubMed  CAS  Google Scholar 

  9. Bevilacqua JA, Bitoun M, Biancalana V et al. (2009) „Necklace“ fibers, a new histological marker of late-onset MTM1-related centronuclear myopathy. Acta Neuropathol 117: 283–291

    Article  PubMed  Google Scholar 

  10. Bitoun M, Bevilacqua JA, Prudhon B et al. (2007) Dynamin 2 mutations cause sporadic centronuclear myopathy with neonatal onset. Ann Neurol 62: 666–670

    Article  PubMed  CAS  Google Scholar 

  11. Bitoun M, Maugenre S, Jeannet PY et al. (2005) Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet 37: 1207–1209

    Article  PubMed  CAS  Google Scholar 

  12. Blondeau F, Laporte J, Bodin S, Superti-Furga G, Payrastre B, Mandel JL (2000) Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway [In Process Citation]. Hum Mol Genet 9: 2223–2229

    PubMed  CAS  Google Scholar 

  13. Bohlega S, Abu-Amero SN, Wakil SM, Carroll P, Al-Amr R, Lach B, Al-Sayed Y, Cupler J, Meyer BF (2004) Mutation of the slow myosin heavy chain rod domain underlies hyaline body myopathy. Neurology 62: 1518–1521

    PubMed  CAS  Google Scholar 

  14. Bohlega S, Lach B, Meyer BF, Al Said Y, Kambouris M, Al Homsi M, Cupler EJ (2003) Autosomal dominant hyaline body myopathy: clinical variability and pathologic findings. Neurology 61: 1519–1523

    PubMed  CAS  Google Scholar 

  15. Bornemann A, Petersen MB, Schmalbruch H (1996) Fatal congenital myopathy with actin filament deposits. Acta Neuropathol (Berl) 92: 104–108

    Article  CAS  Google Scholar 

  16. Brandis A, Aronica E, Goebel HH (2008) TPM2 mutation. Neuromuscul Disord 18: 1005

    Article  PubMed  Google Scholar 

  17. Brooke MH, Engel WK (1969) The histographic analysis of human muscle biopsies with regard to fiber types. 1. Adult male and female. Neurology 19: 221–233

    PubMed  CAS  Google Scholar 

  18. Brooke MH, Engel WK (1969) The histographic analysis of human muscle biopsies with regard to fiber types. 2. Diseases of the upper and lower motor neuron. Neurology 19: 378–393

    PubMed  CAS  Google Scholar 

  19. Brooke MH, Engel WK (1969) The histographic analysis of human muscle biopsies with regard to fiber types. 3. Myotonias, myasthenia gravis, and hypokalemic periodic paralysis. Neurology 19: 469–477

    PubMed  CAS  Google Scholar 

  20. Brooke MH, Engel WK (1969) The histographic analysis of human muscle biopsies with regard to fiber types. 4. Children’s biopsies. Neurology 19: 591–605

    PubMed  CAS  Google Scholar 

  21. Brooke MH, Neville HE (1972) Reducing body myopathy. Neurology 22: 829–840

    PubMed  CAS  Google Scholar 

  22. Cameron CH, Allen IV, Patterson V, Avaria MA (1992) Dominantly inherited tubular aggregate myopathy. J Pathol 168: 397–403

    Article  PubMed  CAS  Google Scholar 

  23. Carmignac V, Salih MA, Quijano-Roy S et al. (2007) C-terminal titin deletions cause a novel early-onset myopathy with fatal cardiomyopathy. Ann Neurol 61: 340–351

    Article  PubMed  CAS  Google Scholar 

  24. Carpenter S, Karpati G, Robitaille Y, Melmed C (1979) Cylindrical spirals in human skeletal muscle. Muscle Nerve 2: 282–287

    Article  PubMed  CAS  Google Scholar 

  25. Chariot P, Benbrik E, Schaeffer A, Gherardi R (1993) Tubular aggregates and partial cytochrome c oxidase deficiency in skeletal muscle of patients with AIDS treated with zidovudine. Acta Neuropathol 85: 431–436

    Article  PubMed  CAS  Google Scholar 

  26. Chui LA, Neustein H, Munsat TL (1975) Tubular aggregates in subclinical alcoholic myopathy. Neurology 25: 405–412

    PubMed  CAS  Google Scholar 

  27. Claeys KG, Fardeau M, Schroder R et al. (2008) Electron microscopy in myofibrillar myopathies reveals clues to the mutated gene. Neuromuscul Disord 18: 656–666

    Article  PubMed  CAS  Google Scholar 

  28. Claeys KG, Maisonobe T, Bohm J et al. (2010) Phenotype of a patient with recessive centronuclear myopathy and a novel BIN1 mutation. Neurology 74: 519–521

    Article  PubMed  CAS  Google Scholar 

  29. Claeys KG, Pellissier JF, Garcia-Bragado F et al. (2010) Myopathy with hexagonally cross-linked crystalloid inclusions: delineation of a clinico-pathological entity. Neuromuscul Disord 20: 701–708

    Article  PubMed  Google Scholar 

  30. Claeys KG, van der Ven PF, Behin A et al. (2009) Differential involvement of sarcomeric proteins in myofibrillar myopathies: a morphological and immunohistochemical study. Acta Neuropathol 117: 293–307

    Article  PubMed  CAS  Google Scholar 

  31. Crompton DE, Chinnery PF, Fey C et al. (2002) Neuroferritinopathy: a window on the role of iron in neurodegeneration. Blood Cells Mol Dis 29: 522–531

    Article  PubMed  CAS  Google Scholar 

  32. Curless RG, Payne CM, Brinner FM (1978) Fingerprint body myopathy: a report of twins. Dev Med Child Neurol 20: 793–798

    Article  PubMed  CAS  Google Scholar 

  33. Curtis AR, Fey C, Morris CM et al. (2001) Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet 28: 350–354

    Article  PubMed  CAS  Google Scholar 

  34. Darin N, Kyllerman M, Wahlstrom J, Martinsson T, Oldfors A (1998) Autosomal dominant myopathy with congenital joint contractures, ophthalmoplegia, and rimmed vacuoles. Ann Neurol 44: 242–248

    Article  PubMed  CAS  Google Scholar 

  35. Davidson Y, Amin H, Kelley T et al. (2009) TDP-43 in ubiquitinated inclusions in the inferior olives in frontotemporal lobar degeneration and in other neurodegenerative diseases: a degenerative process distinct from normal ageing. Acta Neuropathol 118: 359–369

    Article  PubMed  CAS  Google Scholar 

  36. De Bleecker JL, Engel AG, Ertl BB (1996) Myofibrillar myopathy with abnormal foci of desmin positivity. II. Immunocytochemical analysis reveals accumulation of multiple other proteins. J Neuropathol Exp Neurol 55: 563–577

    Article  PubMed  Google Scholar 

  37. de Groot JG, Arts WF (1982) Familial myopathy with tubular aggregates. J Neurol 227: 35–41

    Article  PubMed  Google Scholar 

  38. Denborough MA, Dennett X, Anderson RM (1973) Central-core disease and malignant hyperpyrexia. Br Med J 1: 272–273

    Article  PubMed  CAS  Google Scholar 

  39. Di Blasi C, Blasevich F, Bellafiore E et al. (2010) Calsequestrin and junctin immunoreactivity in hexagonally crosslinked tubular arrays myopathy. Neuromuscul Disord 20: 326–329

    Article  PubMed  Google Scholar 

  40. Dubowitz V (1978) Muscle disorders in childhood. Major Probl Clin Pediatr 16: 1–282

    Google Scholar 

  41. Dubowitz V, Brooke MH (1973) Muscle biopsy: a modern approach. Saunders, London Philadelphia Toronto

    Google Scholar 

  42. Dumonceaux J, Amthor H (2009) Current advances in the development of therapies for neuromuscular disorders based on myostatin signalling, 3rd International Institute of Myology Workshop, Paris, September 12th, 2008. Neuromuscul Disord 19: 797–799

    Article  PubMed  Google Scholar 

  43. Engel AG, Angelini C, Gomez MR (1972) Fingerprint body myopathy, a newly recognized congenital muscle disease. Mayo Clin Proc 47: 377–388

    PubMed  CAS  Google Scholar 

  44. Fardeau M, Tome FM, Derambure S (1976) Familial fingerprint body myopathy. Arch Neurol 33: 724–725

    PubMed  CAS  Google Scholar 

  45. Farkas-Bargeton E, Aicardi J, Arsenio-Nunes ML, Wehrle R (1978) Delay in the maturation of muscle fibers in infants with congenital hypotonia. J Neurol Sci 39: 17–29

    Article  PubMed  CAS  Google Scholar 

  46. Ferreiro A, Ceuterick-de Groote C, Marks JJ et al. (2004) Desmin-related myopathy with Mallory body-like inclusions is caused by mutations of the selenoprotein N gene. Ann Neurol 55: 676–686

    Article  PubMed  CAS  Google Scholar 

  47. Fidzianska A (2002) „Cap disease“ – a failure in the correct muscle fibre formation. J Neurol Sci 201: 27–31

    Article  PubMed  Google Scholar 

  48. Fidzianska A, Badurska B, Ryniewicz B, Dembek I (1981) „Cap disease“: new congenital myopathy. Neurology 31: 1113–1120

    PubMed  CAS  Google Scholar 

  49. Furui E, Fukushima K, Sakashita T, Sakato S, Matsubara S, Takamori M (1997) Familial limb-girdle myasthenia with tubular aggregates. Muscle Nerve 20: 599–603

    Article  PubMed  CAS  Google Scholar 

  50. Gibbels E, Henke U, Schadlich HJ, Haupt WF, Fiehn W (1983) Cylindrical spirals in skeletal muscle: a further observation with clinical, morphological, and biochemical analysis. Muscle Nerve 6: 646–655

    Article  PubMed  CAS  Google Scholar 

  51. Gibbels E, Kellermann K, Schadlich HJ, Adams R, Haupt WF (1992) Follow-up studies in a case of unusual congenital myopathy, suggestive of nemaline type. Acta Neuropathol 83: 371–378

    Article  PubMed  CAS  Google Scholar 

  52. Goebel HH (1998) Congenital myopathies with inclusion bodies: a brief review. Neuromuscul Disord 8: 162–168

    Article  PubMed  CAS  Google Scholar 

  53. Goebel HH, Anderson JR, Hubner C, Oexle K, Warlo I (1997) Congenital myopathy with excess of thin myofilaments. Neuromuscul Disord 7: 160–168

    Article  PubMed  CAS  Google Scholar 

  54. Goebel HH, D’Agostino AN, Wilson J et al. (1997) Spheroid body myopathy revisited. Muscle Nerve 20: 1127–1136

    Article  PubMed  CAS  Google Scholar 

  55. Goebel HH, Laing NG (2009) Actinopathies and myosinopathies. Brain Pathol 19: 516–522

    Article  PubMed  CAS  Google Scholar 

  56. Goebel HH, Muller J, Gillen HW, Merritt AD (1978) Autosomal dominant „spheroid body myopathy“. Muscle Nerve 1: 14–26

    Article  PubMed  CAS  Google Scholar 

  57. Goebel HH, Piirsoo A, Warlo I, Schofer O, Kehr S, Gaude M (1997) Infantile intranuclear rod myopathy. J Child Neurol 12: 22–30

    Article  PubMed  CAS  Google Scholar 

  58. Goebel HH, Warlo I (2000) Gene-related protein surplus myopathies. Mol Genet Metab 71: 267–275

    Article  PubMed  CAS  Google Scholar 

  59. Goebel HH, Warlo IA (2001) Surplus protein myopathies. Neuromuscul Disord 11: 3–6

    Article  PubMed  CAS  Google Scholar 

  60. Gommans IM, Davis M, Saar K, Lammens M et al. (2003) A locus on chromosome 15q for a dominantly inherited nemaline myopathy with core-like lesions. Brain 126: 1545–1551

    Article  PubMed  CAS  Google Scholar 

  61. Gonatas NK, Shy GM, Godfrey EH (1966) Nemaline myopathy. The origin of nemaline structures. N Engl J Med 274: 535–539

    Article  PubMed  CAS  Google Scholar 

  62. Goto Y, Komiyama A, Tanabe Y, Katafuchi Y, Ohtaki E, Nonaka I (1990) Myopathy in Marinesco-Sjogren syndrome: an ultrastructural study. Acta Neuropathol 80: 123–128

    Article  PubMed  CAS  Google Scholar 

  63. Griggs RC, Askanas V, DiMauro S, Engel A, Karpati G, Mendell JR, Rowland LP (1995) Inclusion body myositis and myopathies. Ann Neurol 38: 705–713

    Article  PubMed  CAS  Google Scholar 

  64. Hermanns B, Molnar M, Schröder JM (2000) Peripheral neuropathy associated with hereditary and sporadic inclusion body myositis: confirmation by electron microscopy and morphometry. J Neurol Sci 179: 92–102

    Article  PubMed  CAS  Google Scholar 

  65. Hung RM, Yoon G, Hawkins CE, Halliday W, Biggar D, Vajsar J (2010) Cap myopathy caused by a mutation of the skeletal alpha-actin gene ACTA1. Neuromuscul Disord 20: 238–240

    Article  PubMed  Google Scholar 

  66. Hutchinson DO, Charlton A, Laing NG, Ilkovski B, North KN (2006) Autosomal dominant nemaline myopathy with intranuclear rods due to mutation of the skeletal muscle ACTA1 gene: clinical and pathological variability within a kindred. Neuromuscul Disord 16: 113–121

    Article  PubMed  Google Scholar 

  67. Ikezoe K, Furuya H, Ohyagi Y, Osoegawa M, Nishino I, Nonaka I, Kira J (2003) Dysferlin expression in tubular aggregates: their possible relationship to endoplasmic reticulum stress. Acta Neuropathol 105: 603–609

    PubMed  CAS  Google Scholar 

  68. Ilkovski B, Clement S, Sewry C, North KN, Cooper ST (2005) Defining alpha-skeletal and alpha-cardiac actin expression in human heart and skeletal muscle explains the absence of cardiac involvement in ACTA1 nemaline myopathy. Neuromuscul Disord 15: 829–835

    Article  PubMed  Google Scholar 

  69. Isaacs H, Heffron JJ, Badenhorst M (1975) Central core disease. A correlated genetic, histochemical, ultramicroscopic, and biochemical study. J Neurol Neurosurg Psychiatry 38: 1177–1186

    Article  PubMed  CAS  Google Scholar 

  70. Jadro-Santel D, Grcevic N, Dogan S, Franjic J, Benc H (1980) Centronuclear myopathy with type I fibre hypotrophy and „fingerprint“ inclusions associated with Marfan’s syndrome. J Neurol Sci 45: 43–56

    Article  PubMed  CAS  Google Scholar 

  71. Jay V, Christodoulou J, Mercer-Connolly A, McInnes RR (1992) „Reducing body“-like inclusions in skeletal muscle in childhood-onset acid maltase deficiency. Acta Neuropathol 85: 111–115

    Article  PubMed  CAS  Google Scholar 

  72. Jerusalem F, Engel AG, Gomez MR (1973) Sarcotubular myopathy. A newly recognized, benign, congenital, familial muscle disease. Neurology 23: 897–906

    PubMed  CAS  Google Scholar 

  73. Jeub M, Bitoun M, Guicheney P, Kappes-Horn K, Strach K, Druschky KF, Weis J, Fischer D (2008) Dynamin 2-related centronuclear myopathy: clinical, histological and genetic aspects of further patients and review of the literature. Clin Neuropathol 27: 430–438

    PubMed  CAS  Google Scholar 

  74. Johnston JJ, Kelley RI, Crawford TO et a. (2000) A novel nemaline myopathy in the Amish caused by a mutation in troponin T1. Am J Hum Genet 67: 814–821

    Article  PubMed  CAS  Google Scholar 

  75. Jungbluth H, Cullup T, Lillis S, Zhou H, Abbs S, Sewry C, Muntoni F (2009) Centronuclear myopathy with cataracts due to a novel dynamin 2 (DNM2) mutation. Neuromuscul Disord 20: 49–52

    Article  PubMed  Google Scholar 

  76. Kinoshita M, Satoyoshi E, Suzuki Y (1975) Atypical myopathy with myofibrillar aggregates. Arch Neurol 32: 417–420

    PubMed  CAS  Google Scholar 

  77. Kley RA, Hellenbroich Y, van der Ven PF et al. (2007) Clinical and morphological phenotype of the filamin myopathy: a study of 31 German patients. Brain 130: 3250–3264

    Article  PubMed  Google Scholar 

  78. Lach B, Tarnopolsky M, Nguyen C (2009) Sarcoplasmic hexagonally cross-linked tubular arrays immunostain for caveolin-3: an excess caveolinopathy? Acta Neuropathol 117: 339–341

    Article  PubMed  Google Scholar 

  79. Laporte J, Hu LJ, Kretz C et al. (1996) A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 13: 175–182

    Article  PubMed  CAS  Google Scholar 

  80. Laporte J, Kress W, Mandel JL (2001) Diagnosis of X-linked myotubular myopathy by detection of myotubularin. Ann Neurol 50: 42–46

    Article  PubMed  CAS  Google Scholar 

  81. Lehtokari V-L, Ceuterick-de Groote C, de Jonghe P, Martilla M, Laing NG, Pelin K, Wallgren-Petterson C (2007) Cap disease caused by heterozygous mutation of the beta-tropomyosin gene TPM2. Neuromuscul Disord 17: 433–442

    Article  PubMed  Google Scholar 

  82. Luan X, Hong D, Zhang W, Wang Z, Yuan Y (2010) A novel heterozygous deletion-insertion mutation (2695-2712 del/GTTTGT ins) in exon 18 of the filamin C gene causes filaminopathy in a large Chinese family. Neuromuscul Disord 20: 390–396

    Article  PubMed  Google Scholar 

  83. Mahjneh I, Anttonen AK, Somer M, Paetau A, Lehesjoki AE, Somer H, Udd B (2006) Myopathy is a prominent feature in Marinesco-Sjögren syndrome: A muscle computed tomography study. J Neurol 253: 301–306

    Article  PubMed  Google Scholar 

  84. Mancuso M, Davidzon G, Kurlan RM, Tawil R, Bonilla E, Di Mauro S, Powers JM (2005) Hereditary ferritinopathy: a novel mutation, its cellular pathology, and pathogenetic insights. J Neuropathol Exp Neurol 64: 280–294

    PubMed  CAS  Google Scholar 

  85. Manta P, Terzis G, Papadimitriou C, Kontou C, Vassilopoulos D (2004) Emerin expression in tubular aggregates. Acta Neuropathol 107: 546–552

    Article  PubMed  CAS  Google Scholar 

  86. Martin JJ, Ceuterick C, Van Goethem G (1997) On a dominantly inherited myopathy with tubular aggregates. Neuromuscul Disord 7: 512–520

    Article  PubMed  CAS  Google Scholar 

  87. Martinsson T, Oldfors A, Darin N, Berg K, Tajsharghi H, Kyllerman M, Wahlstrom J (2000) Autosomal dominant myopathy: missense mutation (Glu-706 --> Lys) in the myosin heavy chain IIa gene. Proc Natl Acad Sci USA 97: 14614–14619

    Article  PubMed  CAS  Google Scholar 

  88. McDougall J, Wiles CM, Edwards RH (1980) Spiral membrane cylinders in the skeletal muscle of a patient with melorheostosis. Neuropathol Appl Neurobiol 6: 69–74

    Article  PubMed  CAS  Google Scholar 

  89. Melberg A, Kretz C, Kalimo H, Wallgren-Pettersson C, Toussaint A, Bohm J, Stalberg E, Laporte J (2009) Adult course in dynamin 2 dominant centronuclear myopathy with neonatal onset. Neuromuscul Disord 20: 53–56

    Article  PubMed  Google Scholar 

  90. Merlini L (2008) Marinesco-Sjogren syndrome, fanfare, and more. Neuromuscul Disord 18: 185–188

    Article  PubMed  Google Scholar 

  91. Miller TD, Jackson AP, Barresi R et al. (2009) Inclusion body myopathy with Paget disease and frontotemporal dementia (IBMPFD): clinical features including sphincter disturbance in a large pedigree. J Neurol Neurosurg Psychiatry 80: 583–584

    Article  PubMed  CAS  Google Scholar 

  92. Misra AK, Menon NK, Mishra SK (1992) Abnormal distribution of desmin and vimentin in myofibers in adult onset myotubular myopathy. Muscle Nerve 15: 1246–1252

    Article  PubMed  CAS  Google Scholar 

  93. Monnier N, Lunardi J, Marty I, Mezin P, Labarre-Vila A, Dieterich K, Jouk PS (2009) Absence of beta-tropomyosin is a new cause of Escobar syndrome associated with nemaline myopathy. Neuromuscul Disord 19: 118–123

    Article  PubMed  Google Scholar 

  94. Müller HD, Vielhaber S, Brunn A, Schröder JM (2001) Dominantly inherited myopathy with novel tubular aggregates containing 1-21 tubulofilamentous structures. Acta Neuropathol (Berl) 102: 27–35

    Google Scholar 

  95. Nicot AS, Toussaint A, Tosch V et al. (2007) Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet 39: 1134–1139

    Article  PubMed  CAS  Google Scholar 

  96. North K (2008) What’s new in congenital myopathies? Neuromuscul Disord 18: 433–442

    Article  PubMed  Google Scholar 

  97. Nowak KJ, Sewry CA, Navarro C et al. (2007) Nemaline myopathy caused by absence of alpha-skeletal muscle actin. Ann Neurol 61: 175–184

    Article  PubMed  CAS  Google Scholar 

  98. Nowak KJ, Wattanasirichaigoon D, Goebel HH et al. (1999) Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nat Genet 23: 208–212

    Article  PubMed  CAS  Google Scholar 

  99. Olive M, Goldfarb LG, Shatunov A, Fischer D, Ferrer I (2005) Myotilinopathy: refining the clinical and myopathological phenotype. Brain 128: 2315–2326

    Article  PubMed  Google Scholar 

  100. Papahadjopoulos D, Vail WJ, Jacobson K, Poste G (1975) Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles. Biochim Biophys Acta 394: 483–491

    Article  PubMed  CAS  Google Scholar 

  101. Pelin K, Hilpela P, Donner K et al. (1999) Mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Proc Natl Acad Sci USA 96: 2305–2310

    Article  PubMed  CAS  Google Scholar 

  102. Pica EC, Kathirvel P, Pramono ZA, Lai PS, Yee WC (2008) Characterization of a novel S13F desmin mutation associated with desmin myopathy and heart block in a Chinese family. Neuromuscul Disord 18: 178–182

    Article  PubMed  Google Scholar 

  103. Raheem O, Huovinen S, Suominen T, Haapasalo H, Udd B (2010) Novel myosin heavy chain immunohistochemical double staining developed for the routine diagnostic separation of I, IIA and IIX fibers. Acta Neuropathol 119: 495–500

    Article  PubMed  CAS  Google Scholar 

  104. Rappaport L, Contard F, Samuel JL, Delcayre C, Marotte F, Tome F, Fardeau M (1988) Storage of phosphorylated desmin in a familial myopathy. FEBS Lett 231: 421–425

    Article  PubMed  CAS  Google Scholar 

  105. Rapuzzi S, Prelle A, Moggio M et al. (1995) High serum creatine kinase levels associated with cylindrical spirals at muscle biopsy. Acta Neuropathol 90: 660–664

    Article  PubMed  CAS  Google Scholar 

  106. Ravenscroft G, Colley SM, Walker KR et al. (2008) Expression of cardiac alpha-actin spares extraocular muscles in skeletal muscle alpha-actin diseases – quantification of striated alpha-actins by MRM-mass spectrometry. Neuromuscul Disord 18: 953–958

    Article  PubMed  Google Scholar 

  107. Reilich P, Schoser B, Schramm N et al. (2010) The p.G154S mutation of the alpha-B crystallin gene (CRYAB) causes late-onset distal myopathy. Neuromuscul Disord 20: 255–259

    Article  PubMed  Google Scholar 

  108. Ringel SP, Neville HE, Duster MC, Carroll JE (1978) A new congenital neuromuscular disease with trilaminar muscle fibers. Neurology 28: 282–289

    PubMed  CAS  Google Scholar 

  109. Robertson WC, Jr., Kawamura Y, Dyck PJ (1978) Morphometric study of motoneurons in congenital nemaline myopathy and Werdnig-Hoffmann disease. Neurology 28: 1057–1061

    PubMed  Google Scholar 

  110. Sato I, Wu S, Ibarra MC et al. (2008) Congenital neuromuscular disease with uniform type 1 fiber and RYR1 mutation. Neurology 70: 114–122

    Article  PubMed  CAS  Google Scholar 

  111. Schessl J, Zou Y, McGrath MJ et al. (2008) Proteomic identification of FHL1 as the protein mutated in human reducing body myopathy. J Clin Invest 118: 904–912

    PubMed  CAS  Google Scholar 

  112. Schoser BG, Frosk P, Engel AG, Klutzny U, Lochmuller H, Wrogemann K (2005) Commonality of TRIM32 mutation in causing sarcotubular myopathy and LGMD2H. Ann Neurol 57: 591–595

    Article  PubMed  CAS  Google Scholar 

  113. Schramm N, Born C, Weckbach S, Reilich P, Walter MC, Reiser MF (2008) Involvement patterns in myotilinopathy and desminopathy detected by a novel neuromuscular whole-body MRI protocol. Eur Radiol 18: 2922–2936

    Article  PubMed  Google Scholar 

  114. Schröder JM (2005) Ferritinopathy: diagnosis by muscle or nerve biopsy, with a note on other nuclear inclusion body diseases. Acta Neuropathol (Berl) 109: 109–114

    Article  Google Scholar 

  115. Schröder JM (2009) „Necklace“ fibers as a late clue to the interpretation of the forgotten „trilaminar“ fibers. Acta Neuropathol 118: 317–318

    Article  PubMed  Google Scholar 

  116. Schröder JM (1982) Pathologie der Muskulatur. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  117. Schröder JM, Adams RD (1968) The ultrastructural morphology of the muscle fiber in myotonic dystrophy. Acta Neuropathol (Berl) 10: 218–241

    Article  Google Scholar 

  118. Schröder JM, Becker PE (1972) Anomalien des T-Systems und des sarkoplasmatischen Retikulums bei der Myotonie, Paramyotonie und Adynamie. Virchows Arch A Pathol Pathol Anat 357: 319–344

    Article  PubMed  Google Scholar 

  119. Schröder JM, Durling H, Laing N (2004) Actin myopathy with nemaline bodies, intranuclear rods, and a heterozygous mutation in ACTA1 (Asp154Asn). Acta Neuropathol 108: 250–256

    PubMed  Google Scholar 

  120. Schröder JM, Kramer KG, Hopf HC (1985) Granular nuclear inclusion body disease: fine structure of tibial muscle and sural nerve. Muscle Nerve 8: 52–59

    Article  PubMed  Google Scholar 

  121. Schröder JM, Sommer C, Schmidt B (1990) Desmin and actin associated with cytoplasmic bodies in skeletal muscle fibers: immunocytochemical and fine structural studies, with a note on unusual 18- to 20-nm filaments. Acta Neuropathol 80: 406–414

    Article  PubMed  Google Scholar 

  122. Schröder JM, Thomas PK, Ballin RH (1970) Cross-striped fibrils in Schwann cells. Naturwissenschaften 57: 44

    Article  PubMed  Google Scholar 

  123. Schröder JM, Völker A, Dieler R (1990) Accumulation of abnormal leptomerfibrils in intrafusal muscle fibers. J Neurol Sci 98 (Suppl): 338

    Google Scholar 

  124. Schuelke M, Wagner KR, Stolz LE et al. (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 350: 2682–2688

    Article  PubMed  CAS  Google Scholar 

  125. Selcen D, Engel AG (2005) Mutations in ZASP define a novel form of muscular dystrophy in humans. Ann Neurol 57: 269–276

    Article  PubMed  CAS  Google Scholar 

  126. Selcen D, Muntoni F, Burton BK, Pegoraro E, Sewry C, Bite AV, Engel AG (2009) Mutation in BAG3 causes severe dominant childhood muscular dystrophy. Ann Neurol 65: 83–89

    Article  PubMed  CAS  Google Scholar 

  127. Senderek J, Krieger M, Stendel C et al. (2005) Mutations in SIL1 cause Marinesco-Sjogren syndrome, a cerebellar ataxia with cataract and myopathy. Nat Genet 37: 1312–1314

    Article  PubMed  CAS  Google Scholar 

  128. Sewry CA, Voit T, Dubowitz V (1988) Myopathy with unique ultrastructural feature in Marinesco-Sjögren syndrome. Ann Neurol 24: 576–580

    Article  PubMed  CAS  Google Scholar 

  129. Shalaby S, Hayashi YK, Goto K, Ogawa M, Nonaka I, Noguchi S, Nishino I (2008) Rigid spine syndrome caused by a novel mutation in four-and-a-half LIM domain 1 gene (FHL1). Neuromuscul Disord 18: 959–961

    Article  PubMed  Google Scholar 

  130. Shatunov A, Olive M, Odgerel Z et al. (2009) In-frame deletion in the seventh immunoglobulin-like repeat of filamin C in a family with myofibrillar myopathy. Eur J Hum Genet 17: 656–663

    Article  PubMed  CAS  Google Scholar 

  131. Shinde A, Nakano S, Sugawara M, Toyoshima I, Ito H, Tanaka K, Kusaka H (2008) Expression of caveolar components in primary desminopathy. Neuromuscul Disord 18: 215–219

    Article  PubMed  Google Scholar 

  132. Shy GM, Engel KW, Somers JE, Wanko T (1963) Nemaline myopathy, a new congenital myopathy. Brain 68: 793–810

    Article  Google Scholar 

  133. Shy GM, Magee KR (1956) A new congenital non-progressive myopathy. Brain 79: 610–621

    Article  PubMed  CAS  Google Scholar 

  134. Smets K (2008) X-linked myotubular myopathy and chylothorax. Neuromuscul Disord 18: 183–184

    Article  PubMed  Google Scholar 

  135. Somech R, Shaklai S, Amariglio N, Rechavi G, Simon AJ (2005) Nuclear envelopathies – raising the nuclear veil. Pediatr Res 57: 8R–15R

    Article  PubMed  Google Scholar 

  136. Sommer C, Weishaupt A, Brinkhoff J, Biko L, Wessig C, Gold R, Toyka KV (2005) Paraneoplastic stiff-person syndrome: passive transfer to rats by means of IgG antibodies to amphiphysin. Lancet 365: 1406–1411

    Article  PubMed  CAS  Google Scholar 

  137. Stober A, Aleo A, Kuhl V, Bornemann A, Walter MC, Lochmuller H, Lindner A, Krause S (2010) Novel missense mutation p.A310P in the GNE gene in autosomal-recessive hereditary inclusion-body myopathy/distal myopathy with rimmed vacuoles in an Italian family. Neuromuscul Disord 20: 335–336

    Article  PubMed  Google Scholar 

  138. Stojkovic T, Hammouda el H, Richard P et al. (2009) Clinical outcome in 19 French and Spanish patients with valosin-containing protein myopathy associated with Paget’s disease of bone and frontotemporal dementia. Neuromuscul Disord 19: 316–323

    Article  PubMed  Google Scholar 

  139. Sung JH, Ramirez-Lassepas M, Mastri AR, Larkin SM (1980) An unusual degenerative disorder of neurons associated with a novel intranuclear hyaline inclusion (neuronal intranuclear hyaline inclusion disease). A clinicopathological study of a case. J Neuropathol Exp Neurol 39: 107–130

    Article  PubMed  CAS  Google Scholar 

  140. Susman RD, Quijano-Roy S, Yang N et al. (2010) Expanding the clinical, pathological and MRI phenotype of DNM2-related centronuclear myopathy. Neuromuscul Disord 20: 229–237

    Article  PubMed  Google Scholar 

  141. Suzuki Y, Murakami N, Goto Y, Orimo S, Komiyama A, Kuroiwa Y, Nonaka I (1997) Apoptotic nuclear degeneration in Marinesco-Sjogren syndrome. Acta Neuropathol (Berl) 94: 410–415

    Article  CAS  Google Scholar 

  142. Tajsharghi H, Ohlsson M, Lindberg C, Oldfors A (2007) Congenital myopathy with nemaline rods and cap structures caused by a mutation in the beta-tropomyosin gene (TPM2). Arch Neurol 64: 1334–1338

    Article  PubMed  Google Scholar 

  143. Tajsharghi H, Oldfors A, Macleod DP, Swash M (2007) Homozygous mutation in MYH7 in myosin storage myopathy and cardiomyopathy. Neurology 68: 962

    Article  PubMed  Google Scholar 

  144. Tajsharghi H, Thornell L-E, Lindberg C, Lindvall B, Henriksson KG, Oldfors A (2003) Myosin storage myopathy associated with a heterozygous missense mutation in MYH7. Ann Neurol 54: 494–500

    Article  PubMed  CAS  Google Scholar 

  145. Tan P, Briner J, Boltshauser E, Davis MR, Wilton SD, North K, Wallgren-Pettersson C, Laing NG (1999) Homozygosity for a nonsense mutation in the alpha-tropomyosin slow gene TPM3 in a patient with severe infantile nemaline myopathy. Neuromuscul Disord 9: 573–579

    Article  PubMed  CAS  Google Scholar 

  146. Tominaga K, Hayashi YK, Goto K, Minami N, Noguchi S, Nonaka I, Miki T, Nishino I (2010) Congenital myotonic dystrophy can show congenital fiber type disproportion pathology. Acta Neuropathol 119: 481–486

    Article  PubMed  CAS  Google Scholar 

  147. Toussaint A, Cowling BS, Hnia K et al. (2010) Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies. Acta Neuropathol 121: 253–266

    Article  PubMed  Google Scholar 

  148. Tulinius MH, Lundberg A, Oldfors A (1996) Early-onset myopathy with tubular aggregates. Pediatr Neurol 15: 68–71

    Article  PubMed  CAS  Google Scholar 

  149. Uro-Coste E, Arne-Bes MC, Pellissier JF et al. (2009) Striking phenotypic variability in two familial cases of myosin storage myopathy with a MYH7 Leu1793pro mutation. Neuromuscul Disord 19: 163–166

    Article  PubMed  Google Scholar 

  150. Vicart P, Caron A, Guicheney P et al. (1998) A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20: 92–95

    Article  PubMed  CAS  Google Scholar 

  151. Vidal R, Ghetti B, Takao M et al. (2004) Intracellular ferritin accumulation in neural and extraneural tissue characterizes a neurodegenerative disease associated with a mutation in the ferritin light polypeptide gene. J Neuropathol Exp Neurol 63: 363–380

    PubMed  CAS  Google Scholar 

  152. Vielhaber S, Schroder R, Winkler K et al. (2001) Defective mitochondrial oxidative phosphorylation in myopathies with tubular aggregates originating from sarcoplasmic reticulum. J Neuropathol Exp Neurol 60: 1032–1040

    PubMed  CAS  Google Scholar 

  153. Voit T, Kutz P, Leube B et al. (2001) Autosomal dominant distal myopathy: further evidence of a chromosome 14 locus. Neuromuscul Disord 11: 11–19

    Article  PubMed  CAS  Google Scholar 

  154. Vorgerd M, van der Ven PF, Bruchertseifer V et al. (2005) A mutation in the dimerization domain of filamin c causes a novel type of autosomal dominant myofibrillar myopathy. Am J Hum Genet 77: 297–304

    Article  PubMed  CAS  Google Scholar 

  155. Weihl CC, Pestronk A, Kimonis VE (2009) Valosin-containing protein disease: inclusion body myopathy with Paget’s disease of the bone and fronto-temporal dementia. Neuromuscul Disord 19: 308–315

    Article  PubMed  Google Scholar 

  156. Weihl CC, Temiz P, Miller SE et al. (2008) TDP-43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia. J Neurol Neurosurg Psychiatry 79: 1186–1189

    Article  PubMed  CAS  Google Scholar 

  157. Weiler T, Greenberg CR, Zelinski T et al. (1998) A gene for autosomal recessive limb-girdle muscular dystrophy in Manitoba Hutterites maps to chromosome region 9q31-q33: evidence for another limb-girdle muscular dystrophy locus. Am J Hum Genet 63: 140–147

    Article  PubMed  CAS  Google Scholar 

  158. Yarom R, Reches A (1980) Thick filament degeneration in a case of acute quadriplegia. J Neurol Sci 45: 13–22

    Article  PubMed  CAS  Google Scholar 

  159. Yarom R, Shapira Y (1977) Myosin degeneration in a congenital myopathy. Arch Neurol 34: 114–115

    PubMed  CAS  Google Scholar 

  160. Zhang Y, Chen HS, Khanna VK et al. (1993) A mutation in the human ryanodine receptor gene associated with central core disease. Nat Genet 5: 46–50

    Article  PubMed  CAS  Google Scholar 

  161. Zhou H, Lillis S, Loy RE et al. (2010) Multi-minicore disease and atypical periodic paralysis associated with novel mutations in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul Disord 20: 166–173

    Article  PubMed  Google Scholar 

  162. Zimmer C, Gosztonyi G, Cervos-Navarro J, von Moers A, Schröder JM (1992) Neuropathy with lysosomal changes in Marinesco-Sjogren syndrome: fine structural findings in skeletal muscle and conjunctiva. Neuropediatrics 23: 329–335

    Article  PubMed  CAS  Google Scholar 

  163. Züchner S, Noureddine M, Kennerson M et al. (2005) Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-Marie-Tooth disease. Nat Genet 37: 289–294

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schröder, J. (2012). Kongenitale Myopathien. In: Klöppel, G., Kreipe, H., Remmele, W., Paulus, W., Schröder, J. (eds) Pathologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02324-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02324-8_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02323-1

  • Online ISBN: 978-3-642-02324-8

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics