Skip to main content
Book cover

Pathologie pp 675–684Cite as

Anatomisch-physiologische Grundlagen und Technik der Gewebsentnahme

  • Chapter
  • 5443 Accesses

Zusammenfassung

Das Gewicht der quergestreiften Muskulatur macht beim Erwachsenen etwa 40–45 % des Körpergewichtes aus, beim Neugeborenen sind es etwa 24 %. Beim Menschen lassen sich nicht weniger als 434 Muskeln zählen. Insgesamt soll es etwa 250 Mio. quergestreifte Muskelfasern im menschlichen Körper geben. Jede Muskelfaser ist eine große vielkernige Riesenzelle, deren Länge und Breite innerhalb eines Muskels und von einem Muskel zum anderen erheblich variieren kann. Die längste isolierte Muskelfaser aus dem längsten Muskel des Menschen, einem 52 cm langen M. sartorius, war 34 cm lang. Entsprechend zahlreich sind die Krankheiten oder Läsionen, von denen die Muskulatur betroffen sein kann. Es ist anzunehmen, dass die relativ leichte bioptische Zugänglichkeit der Skelettmuskulatur beim Menschen die außergewöhnliche klinische und morphologische Differenzierung der Myopathien bei den unterschiedlichsten Krankheitsprozessen gefördert hat.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   359.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adams RD, Denny-Brown D, Pearson CM (1965) Diseases of muscle. A study in pathology. Harper & Row, New York

    Google Scholar 

  2. Barker D (1974) The morphology of muscle receptors. In: Barker D, Hunt CC, MacIntyre AK (eds) Handbook of sensory physiology, vol III, part 2: Muscle receptors. Springer, Berlin Heidelberg New York

    Chapter  Google Scholar 

  3. Bergmann M, Weis J, Probst-Cousin S (2009) Muskelbiopsie. Indikationen und Technik. Pathologe 30: 345–351

    Article  PubMed  CAS  Google Scholar 

  4. Boyd IA, Davey MR (1968) Composition of peripheral nerves. Livingstone, Edinghurgh

    Google Scholar 

  5. Brooke MH, Kaiser KK (1974) Trophic functions of the neuron. II. Denervation and regulation of muscle. The use and abuse of muscle histochemistry. Ann N Y Acad Sci 228:121–144

    Article  PubMed  CAS  Google Scholar 

  6. Claeys KG, van der Ven PF, Behin A et al. (2009) Differential involvement of sarcomeric proteins in myofibrillar myopathies: a morphological and immunohistochemical study. Acta Neuropathol 117: 293–307

    Article  PubMed  CAS  Google Scholar 

  7. Clara M (1959) Das Nervensystem des Menschen. Barth, Leipzig

    Google Scholar 

  8. Dalakas MC, Park KY, Semino-Mora C, Lee HS, Sivakumar K, Goldfarb LG (2000) Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N Engl J Med 342: 770–780

    Article  PubMed  CAS  Google Scholar 

  9. Edwards RH, Jones DA, Maunder C, Batra GJ (1975) Needle biopsy for muscle chemistry. Lancet 1: 736–740

    Article  PubMed  CAS  Google Scholar 

  10. Engel AG (1970) Locating motor end plates for electron microscopy. Mayo Clin Proc 45: 450–454

    PubMed  CAS  Google Scholar 

  11. Engel AG, Franzini-Armstrong L (eds) (2004) Myology basic and clinical. McGraw-Hill, New York

    Google Scholar 

  12. Fardeau M, Matsumura K, Tome FM, Collin H, Leturcq F, Kaplan JC, Campbell KP (1993) Deficiency of the 50 kDa dystrophin associated glycoprotein (adhalin) in severe autosomal recessive muscular dystrophies in children native from European countries. C R Acad Sci III 316: 799–804

    Google Scholar 

  13. Farkas-Bargeton E, Diebler MF, Arsenio-Nunes ML, Wehrle R, Rosenberg B (1977) Histochemical, quantitative and ultrastructural maturation of human fetal muscle. J Neurol Sci 31: 245–259

    Article  PubMed  CAS  Google Scholar 

  14. Foucrier J, Bassaglia Y, Grand MC, Rothen B, Perriard JC, Scherrer K (2001) Prosomes form sarcomere-like banding patterns in skeletal, cardiac, and smooth muscle cells. Exp Cell Res 266: 193–200

    Article  PubMed  CAS  Google Scholar 

  15. Gillespie SK, Balasubramanian S, Fung ET, Huganir RL (1996) Rapsyn clusters and activates the synapse-specific receptor tyrosine kinase MuSK. Neuron 16: 953–962

    Article  PubMed  CAS  Google Scholar 

  16. Gregorio CC, Perry CN, McElhinny AS (2005) Functional properties of the titin/connectin-associated proteins, the muscle-specific RING finger proteins (MURFs), in striated muscle. J Muscle Res Cell Motil 26: 389–400

    Article  PubMed  CAS  Google Scholar 

  17. Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18: 111–129

    Article  PubMed  CAS  Google Scholar 

  18. Johnson MA, Sideri G, Weightman D, Appleton D (1973) A comparison of fibre size, fibre type constitution and spatial fibre type distribution in normal human muscle and in muscle from cases of spinal muscular atrophy and from other neuromuscular disorders. J Neurol Sci 20: 345–361

    Article  PubMed  CAS  Google Scholar 

  19. Korfage JA, Brugman P, Van Eijden TM (2000) Intermuscular and intramuscular differences in myosin heavy chain composition of the human masticatory muscles [In Process Citation]. J Neurol Sci 178: 95–106

    Article  PubMed  CAS  Google Scholar 

  20. Korfage JAM, Brugman P, An Eijden TMGJ (2000) Intermuscular and intramuscular differences in myosin heavy chaincomposition of the human masticatory muscles. J Neurol Sci 178: 95–106

    Article  PubMed  CAS  Google Scholar 

  21. McNally EM, de Sa Moreira E, Duggan DJ et al. (1998) Caveolin-3 in muscular dystrophy. Hum Mol Genet 7: 871–877

    Article  PubMed  CAS  Google Scholar 

  22. Meier T, Hauser DM, Chiquet M, Landmann L, Ruegg MA, Brenner HR (1997) Neural agrin induces ectopic postsynaptic specializations in innervated muscle fibers. J Neurosci 17: 6534–6544

    PubMed  CAS  Google Scholar 

  23. Ozawa E, Mizuno Y, Hagiwara Y, Sasaoka T, Yoshida M (2005) Molecular and cell biology of the sarcoglycan complex. Muscle Nerve 32: 563–576

    Article  PubMed  CAS  Google Scholar 

  24. Phimister AJ, Lango J, Lee EH et al. (2007) Conformationdependent stability of junctophilin 1 (JP1) and ryanodine receptor type 1 (RyR1) channel complex is mediated by their hyper-reactive thiols. J Biol Chem 282: 8667–8677

    Article  PubMed  CAS  Google Scholar 

  25. Polgar J, Johnson MA, Weightman D, Appleton D (1973) Data on fibre size in thirty-six human muscles. An autopsy study. J Neurol Sci 19: 307–318

    Article  PubMed  CAS  Google Scholar 

  26. Porro RS, Webster HF, Tobin W (1969) Needle biopsy of skeletal muscle: a phase and electron microscopic evaluation of its usefulness in the study of muscle dsease. J Neuropathol Exp Neurol 28: 229–242

    Article  PubMed  CAS  Google Scholar 

  27. Raheem O, Huovinen S, Suominen T, Haapasalo H, Udd B (2010) Novel myosin heavy chain immunohistochemical double staining developed for the routine diagnostic separation of I, IIA and IIX fibers. Acta Neuropathol 119: 495–500

    Article  PubMed  CAS  Google Scholar 

  28. Raynaud F, Fernandez E, Coulis G et al. (2005) Calpain 1-titin interactions concentrate calpain 1 in the Z-band edges and in the N2-line region within the skeletal myofibril. Febs J 272: 2578–2590

    Article  PubMed  CAS  Google Scholar 

  29. Sadoulet-Puccio HM, Rajala M, Kunkel LM (1997) Dystrobrevin and dystrophin: an interaction through coiledcoil motifs. Proc Natl Acad Sci USA 94: 12413–12418

    Article  PubMed  CAS  Google Scholar 

  30. Salanova M, Priori G, Barone V et al. (2002) Homer proteins and InsP(3) receptors co-localise in the longitudinal sarcoplasmic reticulum of skeletal muscle fibres. Cell Calcium 32: 193–200

    Article  PubMed  CAS  Google Scholar 

  31. Schröder JM (1982) Pathologie der Muskulatur. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  32. Schröder JM (1998) Recommendations for the examination of peripheral nerve biopsies. Virchows Arch 432: 199–205

    Article  PubMed  Google Scholar 

  33. Sorimachi H, Kinbara K, Kimura S et al. (1995) Musclespecific calpain, p94, responsible for limb girdle muscular dystrophy type 2A, associates with connectin through IS2, a p94-specific sequence. J Biol Chem 270: 31158–31162

    Article  PubMed  CAS  Google Scholar 

  34. Telley IA, Denoth J (2007) Sarcomere dynamics during muscular contraction and their implications to muscle function. J Muscle Res Cell Motil 28: 89–104

    Article  PubMed  Google Scholar 

  35. Tortora GJ, Derrikson BH (2008) Anatomie und Physiologie. Wiley-VCH, Weinheim

    Google Scholar 

  36. Weis J, Nikolin S, Nolte K (2009) Neurogene Muskelatrophien und selektive Muskelfaseratrophien: Wegweisende Befunde in der Biopsiediagnostik neuromuskulärer Erkrankungen. Pathologe 30: 379–383

    Article  PubMed  CAS  Google Scholar 

  37. Weisleder N, Takeshima H, Ma J (2008) Immuno-proteomic approach to excitation-contraction coupling in skeletal and cardiac muscle: Molecular insights revealed by the mitsugumins. Cell Calcium 43: 1–8

    Article  PubMed  CAS  Google Scholar 

  38. Wewer UM, Engvall E (1996) Merosin/laminin-2 and muscular dystrophy. Neuromuscul Disord 6: 409–418

    Article  PubMed  CAS  Google Scholar 

  39. Worton R (1995) Muscular dystrophies: diseases of the dystrophin-glycoprotein complex [comment]. Science 270: 755–756

    Article  PubMed  CAS  Google Scholar 

  40. Zacks SI (1973) The motor endplate. Krieger, Huntington New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schröder, J. (2012). Anatomisch-physiologische Grundlagen und Technik der Gewebsentnahme. In: Klöppel, G., Kreipe, H., Remmele, W., Paulus, W., Schröder, J. (eds) Pathologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02324-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02324-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02323-1

  • Online ISBN: 978-3-642-02324-8

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics