Skip to main content

A Review on the Application of Hybrid Artificial Intelligence Systems to Optimization Problems in Operations Management

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5572))

Abstract

The use of hybrid artificial intelligence systems in operations management has grown during the last years given their ability to tackle combinatorial and NP hard problems. Furthermore, operations management problems usually involve imprecision, uncertainty, vagueness, and high-dimensionality. This paper examines recent developments in the field of hybrid artificial intelligence systems for those operations management problems where hybrid approaches are more representative: design engineering, process planning, assembly line balancing, and dynamic scheduling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kasabov, K.N.: Foundation of Neural Networks, Fuzzy Systems and Knowledge Engineering. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  2. Koza, R.J.: Genetic Programming, On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Cordon, O., Herrera, F., Hoffman, F., Magdalena, L.: Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. World Scientific Co. Ltd., Singapore (2001)

    Book  MATH  Google Scholar 

  4. Lin, C.-T., Lee, C.: Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  5. Finger, S., Dixon, J.R.: A review of research in mechanical engineering design. Part I: descriptive, prescriptive, and computer-based models of design processes. Part II: representations, analysis and design for the life cycle. Research in Engineering Design (1), 51–67 (1989)

    Google Scholar 

  6. Evbuowman, N.F.O., Sivaloganathan, S., Jebb, A.: A survey of design philosophies, models, methods and systems. Proc. Insts. Mech. Engrs. Part B: Journal of Engineering Manufacture 210(4), 301–320 (1996)

    Article  Google Scholar 

  7. Vico, F.J., Veredas, F.J., Bravo, J.M., Almaraz, J.: Automatic design synthesis with artificial intelligence techniques. Artificial Intelligence in Engineering 13(3), 251–256 (1999)

    Article  Google Scholar 

  8. Sasaki, M., Gen, M.: Fuzzy multiple objective optimal system design by hybrid genetic algorithm. Applied Soft Computing 3(3), 189–196 (2003)

    Article  Google Scholar 

  9. Wang, J., Terpenny, J.: Interactive evolutionary solution synthesis in fuzzy set-based preliminary engineering design. J. of Intelligent Manufacturing 14(2), 153–167 (2003)

    Article  Google Scholar 

  10. Xiong, Y., Rao, S.S.: Fuzzy nonlinear programming for mixed discrete design optimization through hybrid genetic algorithm. Fuzzy Sets and Systems 146(2), 167–186 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Su, D., Wakelam, M.: Evolutionary optimization within an intelligent hybrid system for design integration. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 13(5), 351–363 (1999)

    Article  Google Scholar 

  12. Tsai, C.Y., Chang, C.A.: Fuzzy neural networks for intelligent design retrieval using associative manufacturing features. J. of Intelligent Manufacturing 14(2), 183–195 (2003)

    Article  Google Scholar 

  13. Saridakis, K.M., Dentsoras, A.J.: Evolutionary neuro-fuzzy modelling in parametric design. In: I Conference in Innovative production machines and systems (2005)

    Google Scholar 

  14. Lu, P.C.: The application of fuzzy neural network techniques in constructing an adaptive car-following indicator. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 12(3), 231–242 (1998)

    Article  Google Scholar 

  15. Hamedi, M.: Intelligent fixture design through a hybrid system of artificial neural network and genetic algorithm. Artificial Intelligence Review 23(3), 295–311 (2005)

    Article  Google Scholar 

  16. Zha, X.F.: Soft computing framework for intelligent human–machine system design, simulation and optimization. Soft Computing 7(3), 184–198 (2003)

    Article  MATH  Google Scholar 

  17. Horvath, M., Markus, A., Vancza, C.: Process planning with genetic algorithms on results of knowledge-based reasoning. Comput. Integr. Manuf. 9(2), 145–166 (1996)

    Article  Google Scholar 

  18. Bowden, R., Bullington, S.F.: Development of manufacturing control strategies using unsupervised machine learning. IIE Trans. 28(4), 319–331 (1996)

    Article  Google Scholar 

  19. Hayashi, Y., Kim, H., Nava, K.: Scenario creation method by genetic algorithms for evaluating future plans. In: Proc. IEEE Conf. Evol. Comput. Piscataway, NJ, pp. 880–885 (1996)

    Google Scholar 

  20. Scholl, A.: Balancing and Sequencing of Assembly Lines, 2nd edn. Physica-Verlag, Heidelberg (1999)

    Book  Google Scholar 

  21. Scholl, A., Becker, C.: State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. European Journal of Operational Research 168, 666–693 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Becker, C., Scholl, A.: A survey on problems and methods in generalized assembly line balancing. European Journal of Operational Research 168(3), 694–715 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Boysen, N., Fliedner, M., Scholl, A.: A classification of assembly line balancing problems. European Journal of Operational Research 183, 674–693 (2007)

    Article  MATH  Google Scholar 

  24. Rekiek, B., Dolgui, A., Delchambre, A., Bratcu, A.: State of art of optimization methods for assembly line design. Annual Reviews in Control 26(2), 163–174 (2002)

    Article  Google Scholar 

  25. Haq, A.N., Rengarajan, K., Jayaprakash, J.: A hybrid genetic algorithm approach to mixed-model assembly line balancing. International Journal of advanced manufacturing technology 28(3-4), 337–341 (2006)

    Article  Google Scholar 

  26. Ponnambalam, S.G., Aravindan, P., Mogileeswar, G.: Assembly line balancing using multi-objective genetic algorithm. In: Proc of CARS&FOF 1998, Coimbatore, India, pp. 222–230 (1998)

    Google Scholar 

  27. Falkenauer, E.: Genetic Algorithms and Grouping Problems. John Wiley & Sons Ltd., Chichester (1997)

    MATH  Google Scholar 

  28. Tseng, H.E., Chen, M.H., Chang, C.C.: Hybrid evolutionary multi-objective algorithms for integrating assembly sequence planning and assembly line balancing. International Journal of Production Research 46(21), 5951–5977 (2008)

    Article  MATH  Google Scholar 

  29. Blum, C., Bautista, J., Pereira, J.: An extended Beam-ACO approach to the time and space constrained simple assembly line balancing problem. In: van Hemert, J., Cotta, C. (eds.) EvoCOP 2008. LNCS, vol. 4972, pp. 85–96. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  30. Suwannarongsri, S., Limnararat, S., Puangdownreong, D.: A new hybrid intelligent method for assembly line balancing. In: IEEE International Conference on Industrial Engineering and Engineering Management, vol. 1-4, pp. 1115–1119 (2007)

    Google Scholar 

  31. Tasan, S.Ö., Tunali, S.: Improving the genetic algorithms performance in simple assembly line balancing. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3984, pp. 78–87. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  32. Yuan, M.H., Li, D.B., Tong, Y.F.: Research on mixed-model assembly line balance with genetic simulated annealing algorithm. In: Proceedings of the 14th international conference on industrial engineering and engineering management, vol. a and b, pp. 71–75 (2007)

    Google Scholar 

  33. Allahverdi, A., Ng, C.T., Cheng, T.C.E., Kovalyov, M.Y.: A survey of scheduling problems with setup times or costs. European Journal of Operational Research 187(3), 985–1032 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. T’kindt, V., Billaut, J.-C.: Multicriteria Scheduling. European Journal of Operational Research 167(3), 589–591 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jain, A.K., Elmaraghy, H.A.: Production scheduling/rescheduling in flexible manufacturing systems. Int. J. Prod. Res. 35(1), 281–309 (1997)

    Article  MATH  Google Scholar 

  36. Chiu, C., Yih, Y.: A learning-based methodology for dynamic scheduling in distributed manufacturing systems. Int. J. Prod. Res. 33(11), 3217–3232 (1995)

    Article  MATH  Google Scholar 

  37. Aytug, H., Koehler, G.H., Snowdon, J.L.: Genetic learning of dynamic scheduling within a simulation environment. Comput. Oper. Res. 21(8), 909–925 (1994)

    Article  MATH  Google Scholar 

  38. Yih, Y.: Trace-driven knowledge acquisition (TDKA) for rule-based real-time scheduling systems. J. Intell. Manuf. 1, 217–230 (1990)

    Article  Google Scholar 

  39. Jones, A., Rabelo, L., Yih, Y.: A hybrid approach for real-time sequencing and scheduling. Int. J. Comput. Integrated Manuf. 8(2), 145–154 (1995)

    Article  Google Scholar 

  40. Lee, C.-Y., Piramuthu, S., Tsai, Y.-K.: Job-shop scheduling with a genetic algorithm and machine learning. Int. J. Prod. Res. 35(4), 1171–1191 (1997)

    Article  MATH  Google Scholar 

  41. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  42. Tamaki, H., Ochi, M., Araki, M.: Application of genetics-based machine learning to production scheduling. In: Symp. Flexible Automation: ASME, pp. 1221–1224 (1996)

    Google Scholar 

  43. Ikkai, Y., Inoue, M., Ohkawa, T., Komoda, N.: A learning method of scheduling knowledge by genetic algorithms. In: IEEE Symp. Emerging Technol. Factory Automation, pp. 641–648. IEEE, Los Alamitos (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ibáñez, O., Cordón, O., Damas, S., Magdalena, L. (2009). A Review on the Application of Hybrid Artificial Intelligence Systems to Optimization Problems in Operations Management. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds) Hybrid Artificial Intelligence Systems. HAIS 2009. Lecture Notes in Computer Science(), vol 5572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02319-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02319-4_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02318-7

  • Online ISBN: 978-3-642-02319-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics