Skip to main content

Hydrodynamic Design of Control Surfaces for Ships Using a MOEA with Neuronal Correction

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5572))

Included in the following conference series:

  • 1673 Accesses

Abstract

In this paper we present a hybrid intelligent system for the hydrodynamic design of control surfaces on ships. Our main contribution here is the hybridization of Multiobjective Evolutionary Algorithms (MOEA) and a neural correction procedure in the fitness evaluation stage that permits obtaining solutions that are precise enough for the MOEA to operate with, while drastically reducing the computational cost of the simulation stage for each individual. The MOEA searches for the optimal solutions and the neuronal system corrects the deviations of the simplified simulation model to obtain a more realistic design. This way, we can exploit the benefits of a MOEA decreasing the computational cost in the evaluation of the candidate solutions while preesrving the reliability of the simulation model. The proposed hybrid system is successfully applied in the design of a 2D control surface for ships and extended to a 3D one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coello, C., Van Veldhuizen, D., Lamont, G.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Kluwer Academic Publishers, Dordrecht (2007)

    MATH  Google Scholar 

  2. Coello, C., Lamont, G.: Applications of Multi-Objective Evolutionary Algorithms. World Scientific, Singapore (2004)

    Book  MATH  Google Scholar 

  3. Huang, V.L., Qin, A.K., Deb, K., Zitzler, E., Suganthan, P.N., Liang, J.J., Preuss, M., Huband, S.: Problem Definitions for Performance Assessment of Multi-objective Optimization Algorithms Special Session on Constrained Real-Parameter Optimization, Technical Report, Nanyang Technological University, Singapore (2007)

    Google Scholar 

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multi-Objective Genetic Algorithm. NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2000)

    Article  Google Scholar 

  5. Suganthan, P.N.: Special Session on Constrained Real-Parameter Optimization, CEC (2007), http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC-07/CEC-07-Comparison.pdf

  6. Vinici, A., Quagliarella, D.: Inverse and Direct Airfoil Design using a Multiobjective Genetic Algorithm. AIA A Journal 35(9), 1499–1505 (1997)

    Article  MATH  Google Scholar 

  7. Thomas, M.W.: Multi-Species Pareto Frontiers in Preliminary Submarine Design. Foundations of Computing and Decision Sciences 25(4), 273–289 (2000)

    MathSciNet  Google Scholar 

  8. Mierzwicki, T.S.: Risk Index for Multi-Objective Design Optimization of Naval Ships MSc thesis, Virginia Polytechnic Institute and State University, (2003)

    Google Scholar 

  9. Olcer, A.I.: A hybrid approach for multi-objective combinatorial optimisation problems in ship design and shipping. Computers&Operations Research 35(9), 2760–2775 (2008)

    MATH  Google Scholar 

  10. Clemente Fernández, J.A., Pérez Rojas, L., Pérez Arribas, F.: Optimización de una forma hidrodinámica mediante algoritmos evolutivos XIX Congreso Panamericano de IngenierPía Naval, Transporte Marítimo e Ingeniería Portuaria (2005)

    Google Scholar 

  11. Thwaites, B.: On the momentum equation in laminar boundary layer flow. ARC RM 2587 (1952)

    Google Scholar 

  12. Cebeci, T., Smith, A.: Analysis of turbulent Boundary layers, pp. 332–333 (1974)

    Google Scholar 

  13. Head, M.R.: Entrainment in the turbulent boundary layers. ARC R&M 3152 (1958)

    Google Scholar 

  14. Martin, O.L., Hansen: Aerodynamics of Wind, pp. 11–66. Turbines Science Publishers. Ltd. (2000)

    Google Scholar 

  15. Moores, J.: Potential Flow 2-Dimensional Vortex Panel Model: Applications to Wingmills, University of Toronto (2003)

    Google Scholar 

  16. Abbot, H., Von Doenhoff, A.E.: Theory of Wing Sections. Dover, New York (1949)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Díaz-Casás, V., Bellas, F., López-Peña, F., Duro, R. (2009). Hydrodynamic Design of Control Surfaces for Ships Using a MOEA with Neuronal Correction. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds) Hybrid Artificial Intelligence Systems. HAIS 2009. Lecture Notes in Computer Science(), vol 5572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02319-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02319-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02318-7

  • Online ISBN: 978-3-642-02319-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics