Skip to main content

Natural Killer Cells in the Treatment of Human Cancer

  • Chapter
  • First Online:
Natural Killer Cells

Abstract

NK cells may be exploited in the treatment of human cancer. One strategy aims for activation of endogenous NK cells in the cancer patient. Another takes advantage of the knowledge regarding “missing-self” recognition and KIR–HLA mismatches in settings of allogeneic stem cell transplantation (SCT) followed by, in some situations, the use of NK cell-based donor lymphocyte infusions. Other strategies employ direct adoptive transfer of NK cells. Here, we briefly discuss these and other prospects for the treatment of human cancer using NK cells either directly or indirectly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kiessling R, Klein E, Wigzell H (1975) "Natural" killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5:112

    CAS  Google Scholar 

  2. Huntington ND, Vosshenrich CA, Di Santo JP (2007) Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat Rev Immunol 7:703

    Article  CAS  PubMed  Google Scholar 

  3. Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225

    Article  CAS  PubMed  Google Scholar 

  4. Moretta A, Bottino C, Mingari MC et al (2002) What is a natural killer cell? Nat Immunol 3:6

    Article  CAS  PubMed  Google Scholar 

  5. Moretta L, Moretta A (2004) Unravelling natural killer cell function: triggering and inhibitory human NK receptors. EMBO J 23:255

    Article  CAS  PubMed  Google Scholar 

  6. Bryceson YT, March ME, Ljunggren HG et al (2006) Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev 214:73

    Article  CAS  PubMed  Google Scholar 

  7. Moretta A, Marcenaro E, Sivori S et al (2005) Early liaisons between cells of the innate immune system in inflamed peripheral tissues. Trends Immunol 26:668

    Article  CAS  PubMed  Google Scholar 

  8. Robertson MJ (2002) Role of chemokines in the biology of natural killer cells. J Leukoc Biol 71:173

    CAS  PubMed  Google Scholar 

  9. Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22:633

    Article  CAS  PubMed  Google Scholar 

  10. Farag SS, Fehniger TA, Ruggeri L et al (2002) Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 100:1935

    Article  CAS  PubMed  Google Scholar 

  11. Di Santo JP (2006) Natural killer cell developmental pathways: a question of balance. Annu Rev Immunol 24:257

    Article  PubMed  CAS  Google Scholar 

  12. Farag SS, Caligiuri MA (2006) Human natural killer cell development and biology. Blood Rev 20:123

    Article  CAS  PubMed  Google Scholar 

  13. Smyth MJ, Hayakawa Y, Takeda K et al (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2:850

    Article  CAS  PubMed  Google Scholar 

  14. Wu J, Lanier LL (2003) Natural killer cells and cancer. Adv Cancer Res 90:127

    Article  CAS  PubMed  Google Scholar 

  15. Algarra I, Ohlen C, Perez M et al (1989) NK sensitivity and lung clearance of MHC-class-I-deficient cells within a heterogeneous fibrosarcoma. Int J Cancer 44:675

    Article  CAS  PubMed  Google Scholar 

  16. Ljunggren HG, Karre K (1985) Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J Exp Med 162:1745

    Article  CAS  PubMed  Google Scholar 

  17. Street SE, Hayakawa Y, Zhan Y et al (2004) Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and gammadelta T cells. J Exp Med 199:879

    Article  CAS  PubMed  Google Scholar 

  18. Guimaraes F, Guven H, Donati D et al (2006) Evaluation of ex vivo expanded human NK cells on antileukemia activity in SCID-beige mice. Leukemia 20:833

    Article  CAS  PubMed  Google Scholar 

  19. Carlsten M, Bjorkstrom NK, Norell H et al (2007) DNAX accessory molecule-1 mediated recognition of freshly isolated ovarian carcinoma by resting natural killer cells. Cancer Res 67:1317

    Article  CAS  PubMed  Google Scholar 

  20. Castriconi R, Dondero A, Corrias MV et al (2004) Natural killer cell-mediated killing of freshly isolated neuroblastoma cells: critical role of DNAX accessory molecule-1-poliovirus receptor interaction. Cancer Res 64:9180

    Article  CAS  PubMed  Google Scholar 

  21. El-Sherbiny YM, Meade JL, Holmes TD et al (2007) The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res 67:8444

    Article  CAS  PubMed  Google Scholar 

  22. Ljunggren HG, Malmberg KJ (2007) Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol 7:329

    Article  CAS  PubMed  Google Scholar 

  23. Miller JS, Soignier Y, Panoskaltsis-Mortari A et al (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105:3051

    Article  CAS  PubMed  Google Scholar 

  24. Ruggeri L, Aversa F, Martelli MF et al (2006) Allogeneic hematopoietic transplantation and natural killer cell recognition of missing self. Immunol Rev 214:202

    Article  CAS  PubMed  Google Scholar 

  25. Ruggeri L, Capanni M, Urbani E et al (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097

    Article  CAS  PubMed  Google Scholar 

  26. Hayakawa Y, Smyth MJ (2006) Innate immune recognition and suppression of tumors. Adv Cancer Res 95:293

    Article  CAS  PubMed  Google Scholar 

  27. Malmberg KJ (2004) Effective immunotherapy against cancer: a question of overcoming immune suppression and immune escape? Cancer Immunol Immunother 53:879

    Article  CAS  PubMed  Google Scholar 

  28. Malmberg KJ, Ljunggren HG (2006) Escape from immune- and nonimmune-mediated tumor surveillance. Semin Cancer Biol 16:16

    Article  CAS  PubMed  Google Scholar 

  29. Costello RT, Sivori S, Marcenaro E et al (2002) Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 99:3661

    Article  CAS  PubMed  Google Scholar 

  30. Jager MJ, Hurks HM, Levitskaya J et al (2002) HLA expression in uveal melanoma: there is no rule without some exception. Hum Immunol 63:444

    Article  CAS  PubMed  Google Scholar 

  31. Salih HR, Rammensee HG, Steinle A (2002) Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J Immunol 169:4098

    CAS  PubMed  Google Scholar 

  32. Castriconi R, Cantoni C, Della Chiesa M et al (2003) Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci U S A 100:4120

    Article  CAS  PubMed  Google Scholar 

  33. Ghiringhelli F, Menard C, Terme M et al (2005) CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 202:1075

    Article  CAS  PubMed  Google Scholar 

  34. Smyth MJ, Teng MW, Swann J et al (2006) CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol 176:1582

    CAS  PubMed  Google Scholar 

  35. Glas R, Sturmhofel K, Hammerling GJ et al (1992) Restoration of a tumorigenic phenotype by beta 2-microglobulin transfection to EL-4 mutant cells. J Exp Med 175:843

    Article  CAS  PubMed  Google Scholar 

  36. Hoglund P, Ljunggren HG, Ohlen C et al (1988) Natural resistance against lymphoma grafts conveyed by H-2Dd transgene to C57BL mice. J Exp Med 168:1469

    Article  CAS  PubMed  Google Scholar 

  37. Karre K, Ljunggren HG, Piontek G et al (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319:675

    Article  CAS  PubMed  Google Scholar 

  38. Ljunggren HG, Karre K (1990) In search of the missing self: MHC molecules and NK cell recognition. Immunol Today 11:237

    Article  CAS  PubMed  Google Scholar 

  39. Karlhofer FM, Ribaudo RK, Yokoyama WM (1992) MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 358:66

    Article  CAS  PubMed  Google Scholar 

  40. Moretta A, Vitale M, Bottino C et al (1993) P58 molecules as putative receptors for major histocompatibility complex (MHC) class I molecules in human natural killer (NK) cells. Anti-p58 antibodies reconstitute lysis of MHC class I-protected cells in NK clones displaying different specificities. J Exp Med 178:597

    Article  CAS  PubMed  Google Scholar 

  41. Moretta L, Bottino C, Pende D et al (2004) Different checkpoints in human NK-cell activation. Trends Immunol 25:670

    Article  CAS  PubMed  Google Scholar 

  42. Zamai L, Ponti C, Mirandola P et al (2007) NK cells and cancer. J Immunol 178:4011

    CAS  PubMed  Google Scholar 

  43. Pessino A, Sivori S, Bottino C et al (1998) Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J Exp Med 188:953

    Article  CAS  PubMed  Google Scholar 

  44. Vitale M, Bottino C, Sivori S et al (1998) NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med 187:2065

    Article  CAS  PubMed  Google Scholar 

  45. Bottino C, Castriconi R, Moretta L et al (2005) Cellular ligands of activating NK receptors. Trends Immunol 26:221

    Article  CAS  PubMed  Google Scholar 

  46. Pogge von Strandmann E, Simhadri VR, von Tresckow B et al (2007) Human Leukocyte Antigen-B-Associated Transcript 3 Is Released from Tumor Cells and Engages the NKp30 Receptor on Natural Killer Cells. Immunity 27:965

    Article  CAS  PubMed  Google Scholar 

  47. Bauer S, Groh V, Wu J et al (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727

    Article  CAS  PubMed  Google Scholar 

  48. Bottino C, Castriconi R, Pende D et al (2003) Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 198:557

    Article  CAS  PubMed  Google Scholar 

  49. Chang CC, Ferrone S (2006) NK cell activating ligands on human malignant cells: molecular and functional defects and potential clinical relevance. Semin Cancer Biol 16:383

    Article  CAS  PubMed  Google Scholar 

  50. Costello RT, Fauriat C, Sivori S et al (2004) NK cells: innate immunity against hematological malignancies? Trends Immunol 25:328

    Article  CAS  PubMed  Google Scholar 

  51. Moretta L, Bottino C, Pende D et al (2006) Surface NK receptors and their ligands on tumor cells. Semin Immunol 18:151

    Article  CAS  PubMed  Google Scholar 

  52. Mendez R, Ruiz-Cabello F, Rodriguez T et al (2007) Identification of different tumor escape mechanisms in several metastases from a melanoma patient undergoing immunotherapy. Cancer Immunol Immunother 56:88

    Article  PubMed  Google Scholar 

  53. Moretta L, Moretta A (2004) Killer immunoglobulin-like receptors. Curr Opin Immunol 16:626

    Article  CAS  PubMed  Google Scholar 

  54. Parham P (2005) MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 5:201

    Article  CAS  PubMed  Google Scholar 

  55. Wagtmann N, Biassoni R, Cantoni C et al (1995) Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains. Immunity 2:439

    Article  CAS  PubMed  Google Scholar 

  56. Braud VM, Allan DS, O'Callaghan CA et al (1998) HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391:795

    Article  CAS  PubMed  Google Scholar 

  57. Bryceson YT, March ME, Ljunggren HG et al (2006) Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107:159

    Article  CAS  PubMed  Google Scholar 

  58. Cerwenka A, Baron JL, Lanier LL (2001) Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc Natl Acad Sci U S A 98:11521

    Article  CAS  PubMed  Google Scholar 

  59. Diefenbach A, Jensen ER, Jamieson AM et al (2001) Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413:165

    Article  CAS  PubMed  Google Scholar 

  60. Wallace ME, Smyth MJ (2005) The role of natural killer cells in tumor control–effectors and regulators of adaptive immunity. Springer Semin Immunopathol 27:49

    Article  PubMed  Google Scholar 

  61. Smyth MJ, Cretney E, Kelly JM et al (2005) Activation of NK cell cytotoxicity. Mol Immunol 42:501

    Article  CAS  PubMed  Google Scholar 

  62. Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2:735

    Article  CAS  PubMed  Google Scholar 

  63. Screpanti V, Wallin RP, Grandien A et al (2005) Impact of FASL-induced apoptosis in the elimination of tumor cells by NK cells. Mol Immunol 42:495

    Article  CAS  PubMed  Google Scholar 

  64. Smyth MJ, Crowe NY, Pellicci DG et al (2002) Sequential production of interferon-gamma by NK1.1(+) T cells and natural killer cells is essential for the antimetastatic effect of alpha-galactosylceramide. Blood 99:1259

    Article  CAS  PubMed  Google Scholar 

  65. Becknell B, Caligiuri MA (2005) Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv Immunol 86:209

    Article  CAS  PubMed  Google Scholar 

  66. Colucci F, Caligiuri MA, Di Santo JP (2003) What does it take to make a natural killer? Nat Rev Immunol 3:413

    Article  CAS  PubMed  Google Scholar 

  67. Bryceson YT, Rudd E, Zheng C et al (2007) Defective cytotoxic lymphocyte degranulation in syntaxin-11 deficient familial hemophagocytic lymphohistiocytosis 4 (FHL4) patients. Blood 110:1906

    Article  CAS  PubMed  Google Scholar 

  68. Mrozek E, Anderson P, Caligiuri MA (1996) Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood 87:2632

    CAS  PubMed  Google Scholar 

  69. Waldmann TA, Dubois S, Tagaya Y (2001) Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 14:105

    CAS  PubMed  Google Scholar 

  70. Rodella L, Zamai L, Rezzani R et al (2001) Interleukin 2 and interleukin 15 differentially predispose natural killer cells to apoptosis mediated by endothelial and tumour cells. Br J Haematol 115:442

    Article  CAS  PubMed  Google Scholar 

  71. Lauwerys BR, Garot N, Renauld JC et al (2000) Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15, or the combination of IL-12 and IL-18. J Immunol 165:1847

    CAS  PubMed  Google Scholar 

  72. Brady J, Hayakawa Y, Smyth MJ et al (2004) IL-21 induces the functional maturation of murine NK cells. J Immunol 172:2048

    CAS  PubMed  Google Scholar 

  73. Parrish-Novak J, Dillon SR, Nelson A et al (2000) Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408:57

    Article  CAS  PubMed  Google Scholar 

  74. Farag SS, Caligiuri MA (2004) Cytokine modulation of the innate immune system in the treatment of leukemia and lymphoma. Adv Pharmacol 51:295

    Article  CAS  PubMed  Google Scholar 

  75. Smyth MJ, Cretney E, Kershaw MH et al (2004) Cytokines in cancer immunity and immunotherapy. Immunol Rev 202:275

    Article  CAS  PubMed  Google Scholar 

  76. Rosenberg SA (2000) Interleukin-2 and the development of immunotherapy for the treatment of patients with cancer. Cancer J Sci Am 6(Suppl 1):S2

    Google Scholar 

  77. Fehniger TA, Cooper MA, Caligiuri MA (2002) Interleukin-2 and interleukin-15: immunotherapy for cancer. Cytokine Growth Factor Rev 13:169

    Article  CAS  PubMed  Google Scholar 

  78. Roda JM, Joshi T, Butchar JP et al (2007) The activation of natural killer cell effector functions by cetuximab-coated, epidermal growth factor receptor positive tumor cells is enhanced by cytokines. Clin Cancer Res 13:6419

    Article  CAS  PubMed  Google Scholar 

  79. Gosselin J, TomoIu A, Gallo RC et al (1999) Interleukin-15 as an activator of natural killer cell-mediated antiviral response. Blood 94:4210

    CAS  PubMed  Google Scholar 

  80. Ozdemir O, Ravindranath, Y, Savasan S (2005) Mechanisms of superior anti-tumor cytotoxic response of interleukin 15-induced lymphokine-activated killer cells. J Immunother 28:44

    Google Scholar 

  81. Waldmann TA (2006) The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 6:595

    Article  CAS  PubMed  Google Scholar 

  82. Kobayashi H, Dubois S, Sato N et al (2005) Role of trans-cellular IL-15 presentation in the activation of NK cell-mediated killing, which leads to enhanced tumor immunosurveillance. Blood 105:721

    Article  CAS  PubMed  Google Scholar 

  83. Hayashi T, Hideshima T, Akiyama M et al (2005) Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol 128:192

    Article  CAS  PubMed  Google Scholar 

  84. Fujii H, Trudeau JD, Teachey DT et al (2007) In vivo control of acute lymphoblastic leukemia by immunostimulatory CpG oligonucleotides. Blood 109:2008

    Article  CAS  PubMed  Google Scholar 

  85. Borg C, Terme M, Taieb J et al (2004) Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell-dependent antitumor effects. J Clin Invest 114:379

    CAS  PubMed  Google Scholar 

  86. Smyth MJ (2006) Imatinib mesylate–uncovering a fast track to adaptive immunity. N Engl J Med 354:2282

    Article  CAS  PubMed  Google Scholar 

  87. Ullrich E, Bonmort M, Mignot G et al (2007) Therapy-induced tumor immunosurveillance involves IFN-producing killer dendritic cells. Cancer Res 67:851

    Article  CAS  PubMed  Google Scholar 

  88. Brandau S, Riemensberger J, Jacobsen M et al (2001) NK cells are essential for effective BCG immunotherapy. Int J Cancer 92:697

    Article  CAS  PubMed  Google Scholar 

  89. Sheridan C (2006) First-in-class cancer therapeutic to stimulate natural killer cells. Nat Biotechnol 24:597

    Article  CAS  PubMed  Google Scholar 

  90. Koh CY, Blazar BR, George T et al (2001) Augmentation of antitumor effects by NK cell inhibitory receptor blockade in vitro and in vivo. Blood 97:3132

    Article  CAS  PubMed  Google Scholar 

  91. Koh CY, Ortaldo JR, Blazar BR et al (2003) NK-cell purging of leukemia: superior antitumor effects of NK cells H2 allogeneic to the tumor and augmentation with inhibitory receptor blockade. Blood 102:4067

    Article  CAS  PubMed  Google Scholar 

  92. Sentman CL, Barber MA, Barber A et al (2006) NK cell receptors as tools in cancer immunotherapy. Adv Cancer Res 95:249

    Article  CAS  PubMed  Google Scholar 

  93. Imai C, Iwamoto S, Campana D (2005) Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 106:376

    Article  CAS  PubMed  Google Scholar 

  94. Uherek C, Tonn T, Uherek B et al (2002) Retargeting of natural killer-cell cytolytic activity to ErbB2-expressing cancer cells results in efficient and selective tumor cell destruction. Blood 100:1265

    CAS  PubMed  Google Scholar 

  95. Ruggeri L, Capanni M, Casucci M et al (1999) Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 94:333

    CAS  PubMed  Google Scholar 

  96. Shlomchik WD, Couzens MS, Tang CB et al (1999) Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 285:412

    Article  CAS  PubMed  Google Scholar 

  97. Farag SS, Bacigalupo A, Eapen M et al (2006) The effect of KIR ligand incompatibility on the outcome of unrelated donor transplantation: a report from the center for international blood and marrow transplant research, the European blood and marrow transplant registry, and the Dutch registry. Biol Blood Marrow Transplant 12:876

    Article  CAS  PubMed  Google Scholar 

  98. Ruggeri L, Mancusi A, Burchielli E et al (2007) Natural killer cell alloreactivity in allogeneic hematopoietic transplantation. Curr Opin Oncol 19:142

    Article  PubMed  Google Scholar 

  99. Kolb HJ, Mittermuller J, Clemm C et al (1990) Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76:2462

    CAS  PubMed  Google Scholar 

  100. Kolb HJ, Simoes B, Schmid C (2004) Cellular immunotherapy after allogeneic stem cell transplantation in hematologic malignancies. Curr Opin Oncol 16:167

    Article  PubMed  Google Scholar 

  101. Slavin S, Naparstek E, Nagler A et al (1996) Allogeneic cell therapy with donor peripheral blood cells and recombinant human interleukin-2 to treat leukemia relapse after allogeneic bone marrow transplantation. Blood 87:2195

    CAS  PubMed  Google Scholar 

  102. Passweg JR, Stern M, Koehl U et al (2005) Use of natural killer cells in hematopoetic stem cell transplantation. Bone Marrow Transplant 35:637

    Article  CAS  PubMed  Google Scholar 

  103. Passweg JR, Tichelli A, Meyer-Monard S et al (2004) Purified donor NK-lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation. Leukemia 18:1835

    Article  CAS  PubMed  Google Scholar 

  104. Gonzalez S, Groh V, Spies T (2006) Immunobiology of human NKG2D and its ligands. Curr Top Microbiol Immunol 298:121

    Article  CAS  PubMed  Google Scholar 

  105. Lundqvist A, McCoy JP, Samsel L, Childs R (2007) Reduction of GVHD and enhanced antitumor effects after adoptive infusion of alloreactive Ly49-mismatched NK cells from MHC-matched donors. Blood 109:3603

    Google Scholar 

  106. Burns LJ, Weisdorf DJ, DeFor TE et al (2003) IL-2-based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: a phase I/II trial. Bone Marrow Transplant 32:177

    Article  CAS  PubMed  Google Scholar 

  107. Law TM, Motzer RJ, Mazumdar M et al (1995) Phase III randomized trial of interleukin-2 with or without lymphokine-activated killer cells in the treatment of patients with advanced renal cell carcinoma. Cancer 76:824

    Article  CAS  PubMed  Google Scholar 

  108. Rosenberg SA, Lotze MT, Muul LM et al (1985) Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 313:1485

    Article  CAS  PubMed  Google Scholar 

  109. Tam YK, Martinson JA, Doligosa K et al (2003) Ex vivo expansion of the highly cytotoxic human natural killer-92 cell-line under current good manufacturing practice conditions for clinical adoptive cellular immunotherapy. Cytotherapy 5:259

    Article  CAS  PubMed  Google Scholar 

  110. Klingemann HG (2005) Natural killer cell-based immunotherapeutic strategies. Cytotherapy 7:16

    Article  CAS  PubMed  Google Scholar 

  111. Carlens S, Gilljam M, Chambers BJ et al (2001) A new method for in vitro expansion of cytotoxic human CD3-CD56+ natural killer cells. Hum Immunol 62:1092

    Article  CAS  PubMed  Google Scholar 

  112. Alici E, Sutlu, T, Bjorkstrand, B, et al (2008) Autologous anti-tumor activity by NK cells expanded from myeloma patients using GMP-compliant components. Blood 111:3155

    Google Scholar 

  113. Guven H, Gilljam M, Chambers BJ et al (2003) Expansion of natural killer (NK) and natural killer-like T (NKT)-cell populations derived from patients with B-chronic lymphocytic leukemia (B-CLL): a potential source for cellular immunotherapy. Leukemia 17:1973

    Article  CAS  PubMed  Google Scholar 

  114. Fauriat C, Andersson S, Bjorklund A et al (2008) Estimation of the size of the alloreactive NK cell repertoire: studies in individuals homozygous for the group A KIR haplotype. J Immunol 181:6010

    CAS  PubMed  Google Scholar 

  115. Gattinoni L, Powell DJ Jr, Rosenberg SA et al (2006) Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 6:383

    Article  CAS  PubMed  Google Scholar 

  116. Dudley ME, Wunderlich JR, Robbins PF et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850

    Article  CAS  PubMed  Google Scholar 

  117. Gasser S, Orsulic S, Brown EJ et al (2005) The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436:1186

    Article  CAS  PubMed  Google Scholar 

  118. Gasser S, Raulet D (2006) The DNA damage response, immunity and cancer. Semin Cancer Biol 16:344

    Article  CAS  PubMed  Google Scholar 

  119. Lundqvist A, Abrams SI, Schrump DS et al (2006) Bortezomib and depsipeptide sensitize tumors to tumor necrosis factor-related apoptosis-inducing ligand: a novel method to potentiate natural killer cell tumor cytotoxicity. Cancer Res 66:7317

    Article  CAS  PubMed  Google Scholar 

  120. Sayers TJ, Brooks AD, Koh CY et al (2003) The proteasome inhibitor PS-341 sensitizes neoplastic cells to TRAIL-mediated apoptosis by reducing levels of c-FLIP. Blood 102:303

    Article  CAS  PubMed  Google Scholar 

  121. VanOosten RL, Moore JM, Karacay B et al (2005) Histone deacetylase inhibitors modulate renal cell carcinoma sensitivity to TRAIL/Apo-2L-induced apoptosis by enhancing TRAIL-R2 expression. Cancer Biol Ther 4:1104

    Article  CAS  PubMed  Google Scholar 

  122. Skov S, Pedersen MT, Andresen L et al (2005) Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B. Cancer Res 65:11136

    Article  CAS  PubMed  Google Scholar 

  123. Cebo C, Da Rocha S, Wittnebel S et al (2006) The decreased susceptibility of Bcr/Abl targets to NK cell-mediated lysis in response to imatinib mesylate involves modulation of NKG2D ligands, GM1 expression, and synapse formation. J Immunol 176:864

    CAS  PubMed  Google Scholar 

  124. Boissel N, Rea D, Tieng V et al (2006) BCR/ABL oncogene directly controls MHC class I chain-related molecule A expression in chronic myelogenous leukemia. J Immunol 176:5108

    CAS  PubMed  Google Scholar 

  125. Reff ME, Carner K, Chambers KS et al (1994) Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83:435

    CAS  PubMed  Google Scholar 

  126. Dall'Ozzo S, Tartas S, Paintaud G et al (2004) Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship. Cancer Res 64:4664

    Article  PubMed  Google Scholar 

  127. Weng WK, Levy R (2003) Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 21:3940

    Article  CAS  PubMed  Google Scholar 

  128. Pitini V, Arrigo C, Naro C et al (2007) Interleukin-2 and lymphokine-activated killer cell therapy in patients with relapsed B-cell lymphoma treated with rituximab. Clin Cancer Res 13:5497

    Article  CAS  PubMed  Google Scholar 

  129. Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol 23:1147

    Article  CAS  PubMed  Google Scholar 

  130. Carter PJ (2006) Potent antibody therapeutics by design. Nat Rev Immunol 6:343

    Article  CAS  PubMed  Google Scholar 

  131. Shahied LS, Tang Y, Alpaugh RK et al (2004) Bispecific minibodies targeting HER2/neu and CD16 exhibit improved tumor lysis when placed in a divalent tumor antigen binding format. J Biol Chem 279:53907

    Article  CAS  PubMed  Google Scholar 

  132. Hartmann F, Renner C, Jung W et al (2001) Anti-CD16/CD30 bispecific antibody treatment for Hodgkin’s disease: role of infusion schedule and costimulation with cytokines. Clin Cancer Res 7:1873

    CAS  PubMed  Google Scholar 

  133. Slavin S (2005) Allogeneic cell-mediated immunotherapy at the stage of minimal residual disease following high-dose chemotherapy supported by autologous stem cell transplantation. Acta Haematol 114:214

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are supported by the Swedish Foundation for Strategic Research, the Swedish Research Council, the Swedish Cancer Society, the Royal Swedish Academy of Sciences, the Swedish Children’s Cancer Society, the Cancer Society of Stockholm, the Karolinska Institutet, and the Karolinska University Hospital. This content of chapter is, in part, on the basis of a symposium paper published in Cancer Immunology Immunotherapy, Springer-Verlag, 2008 (Oct;57(10):1541-52. Epub 2008 Mar 4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Gustaf Ljunggren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Malmberg, KJ., Ljunggren, HG. (2010). Natural Killer Cells in the Treatment of Human Cancer. In: Zimmer, J. (eds) Natural Killer Cells. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02309-5_22

Download citation

Publish with us

Policies and ethics