Skip to main content

The Regulatory Natural Killer Cells

  • Chapter
  • First Online:
Natural Killer Cells

Abstract

NK cells are effector lymphocytes of the innate immune system that control tumors and microbial infection by limiting their spread and subsequent tissue damage. Recently, more and more evidence has been obtained that NK cells also display a potent regulatory function by secreting various cytokines or cell-to-cell contact and thus regulate innate and adaptive immune responses and maintain immune homeostasis. In this review, we summarize the progress in studying the positive and negative regulatory effects of NK cells in immune responses as well as the NK subsets identified in humans and mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Artavanis-Tsakonas K, Tongren JE, Riley EM (2003) The war between the malaria parasite and the immune system: immunity, immunoregulation and immunopathology. Clin Exp Immunol 133:145–152

    CAS  PubMed  Google Scholar 

  2. von Herrath MG, Harrison LC (2003) Antigen-induced regulatory T cells in autoimmunity. Nat Rev Immunol 3:223–232

    Google Scholar 

  3. O’Garra A, Vieira P (2004) Regulatory T cells and mechanisms of immune system control. Nat Med 10:801–805

    PubMed  Google Scholar 

  4. Jiang H, Chess L (2004) An integrated view of suppressor T cell subsets in immunoregulation. J Clin Invest 114:1198–1208

    CAS  PubMed  Google Scholar 

  5. Reise Sousa C (2001) Dendritic cells as sensors of infection. Immunity 14:495–502

    CAS  Google Scholar 

  6. Godfrey DI, Kronenberg M (2004) Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 114:1379–1388

    CAS  PubMed  Google Scholar 

  7. Trinchieri G (1989) Biology of natural killer cells. Adv Immunol 47:187–376

    CAS  PubMed  Google Scholar 

  8. French AR, Yokoyama WM (2003) Natural killer cells and viral infections. Curr Opin Immunol 15:45–51

    CAS  PubMed  Google Scholar 

  9. Smyth MJ, Godfrey DI, Trapani JA (2001) A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2:293–299

    CAS  PubMed  Google Scholar 

  10. Kärre K (2002) NK Cells, MHC class I molecules and the missing self. Scand J Immunol 55:221–228

    PubMed  Google Scholar 

  11. Moretta L, Biassoni R, Bottino C, Mingari MC, Moretta A (2002) Natural killer cells: a mystery no more. Scand J Immunol 55:229–232

    CAS  PubMed  Google Scholar 

  12. Wu P, Wei H, Zhang C, Zhang J, Tian Z (2005) Regulation of NK cell activation by stimulatory and inhibitory receptors in tumor escape from innate immunity. Front Biosci 10:3132–3142

    CAS  PubMed  Google Scholar 

  13. Zhang C, Zhang J, Wei H, Tian Z (2005) Imbalance of NKG2D and its inhibitory counterparts: how does tumor escape from innate immunity? Int Immunopharmacol 5:1099–1111

    CAS  PubMed  Google Scholar 

  14. Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M, Perricaudet M, Tursz T, Maraskovsky E, Zitvogel L (1999) Dendritic cells directly trigger NK cell function: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 5:405–411

    CAS  PubMed  Google Scholar 

  15. Cooper MA, Fehniger TA, Fuchs A, Colonna M, Caligiuri MA (2004) NK cell and DC interactions. Trends Immunol 25:47–52

    CAS  PubMed  Google Scholar 

  16. Moretta A (2002) Natural killer cells and dendritic cells: rendezvous in abused tissues. Nat Rev Immunol 2:957–963

    CAS  PubMed  Google Scholar 

  17. Raulet D (2004) Interplay of natural killer cells and their receptors with the adaptive immune responses. Nat Immunol 5:996–1002

    CAS  PubMed  Google Scholar 

  18. Zitvogel L (2002) Dendritic and Natural killer cells cooperate in the control/switch of innate immunity. J Exp Med 195:F9–F14

    Google Scholar 

  19. Moretta L, Ferlazzo G, Mingari MC, Melioli G, Moretta A (2003) Human natural killer cell function and their interactions with dendritic cells. Vaccine 21:S38–S42

    Google Scholar 

  20. Kalinski P, Giermasz A, Nakamura Y, Basse P, Storkus WJ, Kirkwood JM, Mailliard RB (2005) Helper role of NK cells during the induction of anticancer responses by dendritic cells. Mol Immunol 42:535–539

    CAS  PubMed  Google Scholar 

  21. Guan H, Moretto M, Bzik DJ, Gigley J, Khan IA (2007) NK cells enhance dendritic cell response against parasite antigens via NKG2D pathway. J Immunol 179:590–596

    CAS  PubMed  Google Scholar 

  22. Vieira PL, de Jong EC, Wierenga EA, Kapsenberg ML, Kalinski P (2000) Development of Th1-inducing capacity in myeloid dendritic cells requires environmental instruction. J Immunol 164:4507–4512

    CAS  PubMed  Google Scholar 

  23. Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR (1998) Help for cytotoxic-T-cell responses is mediated by CD40 signaling. Nature 393:478–480

    CAS  PubMed  Google Scholar 

  24. Adam C, King S, Allgeier T, Braumuller H, Luking C, Mysliwietz J, Kriegeskorte A, Busch DH, Rocken M, Mocikat R (2005) DC-NK cell cross talk as a novel CD4+ T-cell-independent pathway for antitumor CTL induction. Blood 106:338–344

    CAS  PubMed  Google Scholar 

  25. Westwood JA, Kelly JM, Tanner JE, Kershaw MH, Smyth MJ, Hayakawa Y (2004) Cutting Edge: Novel priming of tumor-specific immunity by NKG2D-triggered NK cell-mediated tumor rejection and Th1-independent CD4+ T cell pathway. J Immunol 172:757–761

    CAS  PubMed  Google Scholar 

  26. Kos FJ, Engleman EG (1995) Requirement for natural killer cells in the induction of cytotoxic T cells. J Immunol 155:578–584

    CAS  PubMed  Google Scholar 

  27. Kos FJ, Engleman EG (1996) Role of natural killer cells in the generation of influenza virus-specific cytotoxic T cells. Cell Immunol 173:1–6

    CAS  PubMed  Google Scholar 

  28. Geldhof AB, Van Ginderachter JA, Liu Y, Noel W, Raes G, De Baetselier P (2002) Antagonistic effect of NK cells on alternatively activated monocytes: a contribution of NK cells to CTL generation. Blood 100:4049–4058

    CAS  PubMed  Google Scholar 

  29. Kelly JM, Darcy PK, Markby JL, Godfrey DI, Takeda K, Yagita H, Smyth MJ (2002) Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection. Nat Immunol 3:83–90

    CAS  PubMed  Google Scholar 

  30. Wilcox RA, Tamada K, Strome SE, Chen L (2002) Signaling through NK cell-associated CD137 promotes both helper function for CD8+ cytolytic T cells and responsiveness to IL-2 but not cytolytic activity. J Immunol 169:4230–4236

    CAS  PubMed  Google Scholar 

  31. Kos FJ, Engleman EG (1996) Immune regulation: a critical link between NK cells and CTLs. Immunol Today 17:174–176

    CAS  PubMed  Google Scholar 

  32. Vankayalapati R, Klucar P, Wizel B, Weis SE, Samten B, Safi H, Shams H, Barnes PF (2004) NK cells regulate CD8+ T cell effector function in response to an intracellular pathogen. J Immunol 172:130–137

    CAS  PubMed  Google Scholar 

  33. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220

    CAS  PubMed  Google Scholar 

  34. Phillips JH, Le AM, Lanier LL (1984) Natural killer cells activated in a human mixed lymphocyte response culture identified by expression of Leu-11 and class II histocompatibility antigens. J Exp Med 159:993–1008

    CAS  PubMed  Google Scholar 

  35. Roncarolo MG, Bigler M, Haanen JB, Yssel H, Bacchetta R, de Vries JE, Spits H (1991) Natural killer cell clones can efficiently process and present protein antigens. J Immunol 147:781–787

    CAS  PubMed  Google Scholar 

  36. Zingoni A, Sornasse T, Cocks BG, Tanaka Y, Santoni A, Lanier LL (2004) Cross-talk between activated human NK cells and CD4+ T cells via OX40-OX40L interaction. J Immunol 173:3716–3724

    CAS  PubMed  Google Scholar 

  37. Zingoni A, Sornasse T, Cocks BG, Tanaka Y, Santoni A, Lanier LL (2005) NK cell regulation of T cell-mediated responses. Mol Immunol 42:451–454

    CAS  PubMed  Google Scholar 

  38. Hanna J, Gonen-Gross T, Fitchett J, Daniels M, Heller M, Gonen-Gross T, Manaster E, Cho SY, LaBarre MJ, Mandelboim O (2004) Novel APC-like properties of human NK cells directly regulate T cell activation. J Clin Invest 114:1612–1623

    CAS  PubMed  Google Scholar 

  39. Heinzel FP, Schoenhaut DS, Rerko RM, Rosser LE, Gately MK (1993) Recombinant interleukin 12 cures mice infected with Leishmania major. J Exp Med 177:1505–1509

    CAS  PubMed  Google Scholar 

  40. Byrne P, McGuirk P, Todryk S, Mills KH (2004) Depletion of NK cells results in disseminating lethal infection with Bordetella pertussis associated with a reduction of antigen-specific Th1 and enhancement of Th2, but not Tr1 cells. Eur J Immunol 34:2579–2588

    CAS  PubMed  Google Scholar 

  41. Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133:775–787

    CAS  PubMed  Google Scholar 

  42. Kang SM, Tang Q, Bluestone JA (2007) CD4+CD25+ regulatory T cells in transplantation: progress, challenges and prospects. Am J Transplant 7:1457–1463

    CAS  PubMed  Google Scholar 

  43. Wang HY, Wang RF (2007) Regulatory T cells and cancer. Curr Opin Immunol 19: 217–223

    CAS  PubMed  Google Scholar 

  44. Costantino CM, Baecher-Allan CM, Hafler DA (2008) Human regulatory T cells and autoimmunity. Eur J Immunol 38:921–924

    CAS  PubMed  Google Scholar 

  45. Brillard E, Pallandre JR, Chalmers D, Ryffel B, Radlovic A, Seilles E et al (2007) Natural killer cells prevent CD28-mediated Foxp3 transcription in CD4+CD25- T lymphocytes. Exp Hematol 35:416–425

    CAS  PubMed  Google Scholar 

  46. Roy S, Barnes PF, Garg A, Wu S, Cosman D, Vankayalapati R (2008) NK cells lyse T regulatory cells that expand in response to an intracellular pathogen. J Immunol 180:1729–1736

    CAS  PubMed  Google Scholar 

  47. Della Chiesa M, Vitale M, Carlomagno S, Ferlazzo G, Moretta L, Moretta A (2003) The natural killer cell-mediated killing of autologous dendritic cells is confined to a cell subset expressing CD94/NKG2A, but lacking inhibitory killer Ig-like receptors. Eur J Immunol 33:1657–1666

    CAS  PubMed  Google Scholar 

  48. Trivedi PP, Roberts PC, Wolf NA, Swanborg RH (2005) NK cells inhibit T cell proliferation via p21-mediated cell cycle arrest. J Immunol 174:4590–4597

    CAS  PubMed  Google Scholar 

  49. Yu G, Xu X, Vu MD, Kilpatrick ED, Li XC (2006) NK cells promote transplant tolerance by killing donor antigen-presenting cells. J Exp Med 203:1851–1858

    CAS  PubMed  Google Scholar 

  50. Kroemer A, Edtinger K, Li XC (2008) The innate natural killer cells in transplant rejection and tolerance induction. Curr Opin Organ Transplant 13:339–343

    PubMed  Google Scholar 

  51. Deniz G, Erten G, Kücüksezer UC, Kocacik D, Karagiannidis C, Aktas E et al (2008) Regulatory NK cells suppress antigen-specific T cell responses. J Immunol 180:850–857

    CAS  PubMed  Google Scholar 

  52. Maroof A, Beattie L, Zubairi S, Svensson M, Stager S, Kayr PM (2008) Posttranscriptional regulation of il10 gene expression allows natural killer cells to express immunoregulatory function. Immunity 29:295–305

    CAS  PubMed  Google Scholar 

  53. Tiegs G, Hentschel J, Wendel A (1992) A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest 90:196–203

    CAS  PubMed  Google Scholar 

  54. Dong Z, Zhang C, Wei H, Sun R, Tian Z (2005) Impaired NK cell cytotoxicity by high level of interferon-gamma in concanavalin A-induced hepatitis. Can J Physiol Pharmacol 83:1045–1053

    CAS  PubMed  Google Scholar 

  55. Li B, Sun R, Wei H, Gao B, Tian Z (2006) Interleukin-15 prevents concanavalin A-induced liver injury in mice via NKT cell-dependent mechanism. Hepatology 43:1211–1219

    CAS  PubMed  Google Scholar 

  56. Jirillo E, Caccavo D, Magrone T, Piccigallo E, Amati L, Lembo A, Kalis C, Gumenscheimer M (2002) The role of the liver in the response to LPS: experimental and clinical findings. J Endotoxin Res 8:319–327

    CAS  PubMed  Google Scholar 

  57. Schumann J, Wolf D, Pahl A, Brune K, Papadopoulos T, van Rooijen N, Tiegs G (2000) Importance of Kupffer cells for T-cell-dependent liver injury in mice. Am J Pathol 157: 1671–1683

    CAS  PubMed  Google Scholar 

  58. Hoebe KH, Witkamp RF, Fink-Gremmels J, Van Miert AS, Monshouwer M (2001) Direct cell-to-cell contact between Kupffer cells and hepatocytes augments endotoxin-induced hepatic injury. Am J Physiol Gastrointest Liver Physiol 280:G720–G728

    Google Scholar 

  59. Kusters S, Gantner F, Kunstle G, Tiegs G (1996) Interferon gamma plays a critical role in T cell-dependent liver injury in mice initiated by concanavalin A. Gastroenterology 111:462–741

    CAS  PubMed  Google Scholar 

  60. Kaneko Y, Harada M, Kawano T, Yamashita M, Shibata Y, Gejyo F, Nakayama T, Taniguchi M (2000) Augmentation of Valpha14 NKT cell-mediated cytotoxicity by interleukin 4 in an autocrine mechanism resulting in the development of concanavalin A-induced hepatitis. J Exp Med 191:105–114

    CAS  PubMed  Google Scholar 

  61. Takeda K, Hayakawa Y, Van Kaer L, Matsuda H, Yagita H, Okumura K (2000) Critical contribution of liver natural killer T cells to a murine model of hepatitis. Proc Natl Acad Sci USA 97:5498–5503

    CAS  PubMed  Google Scholar 

  62. Dong Z, Wei H, Sun R, Tian Z (2007) The roles of innate immune cells in liver injury and regeneration. Cell Mol Immunol 4:241–252

    CAS  PubMed  Google Scholar 

  63. Baxter AG, Smyth MJ (2002) The role of NK cells in autoimmune disease. Autoimmunity 35:1–14

    CAS  PubMed  Google Scholar 

  64. Johansson S, Berg L, Hall H, Höglund P (2005) NK cells: elusive players in autoimmunity. Trends Immunol 26:613–618

    CAS  PubMed  Google Scholar 

  65. Jie HB, Sarvetnick N (2004) The role of NK cells and NK cell receptors in autoimmune disease. Autoimmunity 37:147–153

    CAS  PubMed  Google Scholar 

  66. Abe T, Kawamura H, Kawabe S, Watanabe H, Gejyo F, Abo T (2002) Liver injury due to sequential activation of natural killer cells and natural killer T cells by carrageenan. J Hepatol 36:614–623

    CAS  PubMed  Google Scholar 

  67. Liu ZX, Govindarajan S, Okamoto S, Dennert G (2000) NK cells cause liver injury and facilitate the induction of T cell-mediated immunity to a viral liver infection. J Immunol 164:6480–6486

    CAS  PubMed  Google Scholar 

  68. Chen Y, Wei H, Gao B, Hu Z, Zheng S, Tian Z (2005) Activation and function of hepatic NK cells in hepatitis B infection: an underinvestigated innate immune response. J Viral Hepat 12:38–45

    CAS  PubMed  Google Scholar 

  69. Wiltrout RH, Salup RR, Twilley TA, Talmadge JE (1985) Immunomodulation of natural killer activity by polyribonucleotides. J Biol Response Mod 4:512–517

    CAS  PubMed  Google Scholar 

  70. Dong Z, Wei H, Sun R, Hu Z, Gao B, Tian Z (2004) Involvement of natural killer cells in PolyI:C-induced liver injury. J Hepatol 41:966–973

    CAS  PubMed  Google Scholar 

  71. Wang J, Xu J, Zhang W, Wei H, Tian Z (2005) TLR3 ligand-induced accumulation of activated splenic natural killer cells into liver. Cell Mol Immunol 2:449–453

    CAS  PubMed  Google Scholar 

  72. Ochi M, Ohdan H, Mitsuta H, Onoe T, Tokita D, Hara H et al (2004) Liver NK cells expressing TRAIL are toxic against self hepatocytes in mice. Hepatology 39:1321–1331

    CAS  PubMed  Google Scholar 

  73. Wang J, Sun R, Wei H, Dong Z, Tian Z (2006) Pre-activation of T lymphocytes by low dose of concanavalin A aggravates toll-like receptor-3 ligand-induced NK cell-mediated liver injury. Int Immunopharmacol 6:800–807

    CAS  PubMed  Google Scholar 

  74. Wang J, Sun R, Wei H, Dong Z, Gao B, Tian Z (2006) Poly I:C prevents T cell-mediated hepatitis via an NK-dependent mechanism. J Hepatol 44:446–454

    CAS  PubMed  Google Scholar 

  75. Chen Y, Wei H, Sun R, Tian Z (2005) Impaired function of hepatic natural killer cells from murine chronic HBsAg carriers. Int Immunopharmacol 5:1839–1852

    CAS  PubMed  Google Scholar 

  76. Chen Y, Sun R, Jiang W, Wei H, Tian Z (2007) Liver-specific HBsAg transgenic mice are over-sensitive to Poly(I:C)-induced liver injury in NK cell- and IFN-gamma -dependent manner. J Hepatol 47:183–190

    CAS  PubMed  Google Scholar 

  77. Chen Y, Wei H, Sun R, Dong Z, Zhang J, Tian Z (2007) Increased susceptibility to liver injury in hepatitis B virus transgenic mice involves NKG2D-ligand interaction and natural killer cells. Hepatology 46:706–715

    CAS  PubMed  Google Scholar 

  78. Jiang W, Sun R, Wei H, Tian Z (2005) Toll-like receptor 3 ligand attenuates LPS-induced liver injury by down-regulation of toll-like receptor 4 expression on macrophages. Proc Natl Acad Sci USA 102:17077–17082

    CAS  PubMed  Google Scholar 

  79. Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B (2006) Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 130:435–452

    CAS  PubMed  Google Scholar 

  80. Pazmany L (2005) Do NK cells regulate human autoimmunity? Cytokine 32:76–80

    CAS  PubMed  Google Scholar 

  81. Smeltz RB, Wolf NA, Swanborg RH (1999) Inhibition of autoimmune T cell responses in the DA rat by bone marrow-derived NK cells in vitro: implications for autoimmunity. J Immunol 163:1390–1397

    CAS  PubMed  Google Scholar 

  82. Xu W, Fazekas G, Hara H, Tabira T (2005) Mechanism of natural killer (NK) cell regulatory role in experimental autoimmune encephalomyelitis. J Neuroimmunol 163:24–30

    CAS  PubMed  Google Scholar 

  83. Takahashi K, Aranami T, Endoh M, Miyake S, Yamamura T (2004) The regulatory role of natural killer cells in multiple sclerosis. Brain 127(Pt 9):1917–1927

    PubMed  Google Scholar 

  84. Takahashi K, Miyake S, Kondo T, Terao K, Hatakenaka M, Hashimoto S, Yamamura T (2001) Natural killer type 2 bias in remission of multiple sclerosis. J Clin Invest 107:R23–R29

    Google Scholar 

  85. Li Z, Lim WK, Mahesh SP, Liu B, Nussenblatt RB (2005) Cutting edge: in vivo blockade of human IL-2 receptor induces expansion of CD56(bright) regulatory NK cells in patients with active uveitis. J Immunol 174:5187–5191

    CAS  PubMed  Google Scholar 

  86. Bielekova B, Catalfamo M, Reichert-Scrivner S, Packer A, Cerna M, Waldmann TA et al (2006) Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2Ralpha-targeted therapy (daclizumab) in multiple sclerosis. Proc Natl Acad Sci USA 103:5941–5946

    CAS  PubMed  Google Scholar 

  87. Tisch R, McDevitt H (1996) Insulin-dependent diabetes mellitus. Cell 85:291–297

    CAS  PubMed  Google Scholar 

  88. Flodstrom M, Maday A, Balakrishna D, Cleary MM, Yoshimura A, Sarvetnick N (2002) Target cell defense prevents the development of diabetes after viral infection. Nat Immunol 3:373–382

    CAS  PubMed  Google Scholar 

  89. Delovitch TL, Singh AB (1997) The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity 7:727–738

    CAS  PubMed  Google Scholar 

  90. Ogasawara K, Hamerman JA, Ehrlich LR, Bour-Jordan H, Santamaria P, Bluestone JA, Lanier LL (2004) NKG2D blockade prevents antoimmune diabetes in NOD mice. Immunity 20:757–767

    CAS  PubMed  Google Scholar 

  91. Shi FD, Wang HB, Li H, Hong S, Taniguchi M, Link H, Van Kaer L, Ljunggren HG (2000) Natural killer cells determine the outcome of B cell-mediated autoimmunity. Nat Immunol 1:245–251

    CAS  PubMed  Google Scholar 

  92. Poirot L, Benoist C, Mathis D (2004) Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity. Proc Natl Acad Sci USA 101:8102–8107

    CAS  PubMed  Google Scholar 

  93. Lee I, Qin H, Trudeau J, Dutz J, Tan R (2004) Regulation of autoimmune diabetes by Complete Freund’s Adjuvant is mediated by NK cells. J Immunol 172:937–942

    CAS  PubMed  Google Scholar 

  94. Serreze DV, Hamaguchi K, Leiter EH (1989) Immunostimulation circumvents diabetes in NOD/Lt mice. J Autoimmun 2:759–776

    CAS  PubMed  Google Scholar 

  95. Zhou R, Wei H, Tian Z (2007) NK3-like NK cells are involved in protective effect of polyinosinic-polycytidylic acid on type 1 diabetes in nonobese diabetic mice. J Immunol 178:2141–2147

    CAS  PubMed  Google Scholar 

  96. Perricone R, Perricone C, Carlis CD, Shoenfeld Y (2008) NK cells in autoimmunity: a two-edg’d weapon of the immune system. Autoimmun Rev 7:384–390

    PubMed  Google Scholar 

  97. Koopman LA, Kopcow HD, Rybalov B, Boyson JE, Orange JS, Schatz F, Masch R, Lockwood CJ, Schachter AD, Park PJ, Strominger JL (2003) Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med 198:1201–1212

    CAS  PubMed  Google Scholar 

  98. Zhang J, Croy BA, Tian Z (2005) Uterine natural killer cells: their choices, their missions. Cell Mol Immunol 2:123–129

    CAS  PubMed  Google Scholar 

  99. Wu D, Zhang J, Sun R, Wei H, Tian Z (2007) Preferential distribution of NK cells into uteri of C57Bl/6J mice after adoptive transfer of lymphocytes. J Reprod Immunol 75:120–127

    CAS  PubMed  Google Scholar 

  100. Zhang J, Tian Z (2007) UNK cells: their role in tissue re-modelling and preeclampsia. Semin Immunopathol 29:123–313

    PubMed  Google Scholar 

  101. Eidukaite A, Siaurys A, Tamosiunas V (2004) Differential expression of KIR/NKAT2 and CD94 molecules on decidual and peripheral blood CD56bright and CD56dim natural killer cell subsets. Fertil Steril 81(Suppl 1):863–868

    CAS  PubMed  Google Scholar 

  102. Shigeru S, Akitoshi N, Subaru MH, Shiozaki A (2008) The balance between cytotoxic NK cells and regulatory NK cells in human pregnancy. J Reprod Immunol 77:14–22

    CAS  PubMed  Google Scholar 

  103. Varla-Leftherioti M (2005) The significance of the women's repertoire of natural killer cell receptors in the maintenance of pregnancy. Chem Immunol Allergy 89:84–95

    CAS  PubMed  Google Scholar 

  104. Blois SM, Barrientos G, Garcia MG, Orsal AS, Tometten M, Cordo-Russo RI et al (2008) Interaction between dendritic cells and natural killer cells during pregnancy in mice. J Mol Med 86:837–852

    PubMed  Google Scholar 

  105. Kitaya K, Nakayama T, Okubo T, Kuroboshi H, Fushiki S, Honjo H (2003) Expression of macrophage inflammatory protein-1β in human endometrium: its role in endometrial recruitment of natural killer cells. J Clin Endocrinol Metab 88:1809–1814

    CAS  PubMed  Google Scholar 

  106. Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S et al (2006) Decidual NK cells regulate key developmental processes at the human fetal–maternal interface. Nat Med 12:1065–1074

    CAS  PubMed  Google Scholar 

  107. Levine RJ, Lam C, Qian C, Yu KF, Maynard SE, Sachs BP et al (2006) Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med 355:992–1005

    CAS  PubMed  Google Scholar 

  108. Zhang C, Zhang J, Tian Z (2006) The regulatory effect of natural killer cells: do “NK-reg cells” exist? Cell Mol Immunol 3:241–254

    CAS  PubMed  Google Scholar 

  109. Giuliani M, Giron-Michel J, Negrini S, Vacca P, Durali D, Caignard A et al (2008) Generation of a novel regulatory NK cell subset from peripheral blood CD34+ progenitors promoted by membrane-bound IL-15. PLoS ONE 3:e2241

    Google Scholar 

  110. Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22:633–640

    CAS  PubMed  Google Scholar 

  111. Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, Carson WE, Caligiur MA (2001) Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Blood 97:3146–3151

    CAS  PubMed  Google Scholar 

  112. Jacobs R, Hintzen G, Kemper A, Beul K, Kempf S, Behrens G, Sykora KW, Schmidt RE (2001) CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. Eur J Immunol 31:3121–3126

    CAS  PubMed  Google Scholar 

  113. Fehniger TA, Cooper MA, Nuovo GJ, Cella M, Facchetti F, Colonna M, Caligiuri MA (2003) CD56 bright natural killer cells are present in human lymph nodes and are activated by T cell-derived IL-2: a potential new link between adaptive and innate immunity. Blood 101:3052–3057

    CAS  PubMed  Google Scholar 

  114. Hu PF, Hultin LE, Hultin P, Hausner MA, Hirji K, Jewett A, Bonavida B, Detels R, Giorgi JV (1995) Natural killer cell immunodeficiency in HIV disease is manifest by profoundly decreased numbers of CD16+CD56+ cells and expansion of a population of CD16dimCD56- cells with low lytic activity. J Acquir Immune Defic Syndr Hum Retrovirol 10:331–340

    CAS  PubMed  Google Scholar 

  115. Bauernhofer T, Kuss I, Henderson B, Baum AS, Whiteside TL (2003) Preferential apoptosis of CD56dim natural killer cell subset in patients with cancer. Eur J Immunol 33:119–124

    CAS  PubMed  Google Scholar 

  116. Croy BA, Esadeg S, Chantakru S, van den Heuvel M, Paffaro VA, He H, Black GP, Ashkar AA, Kiso Y, Zhang J (2003) Update on pathways regulating the activation of uterine natural killer cells, their interactions with decidual spiral arteries and homing of their precursors to the uterus. J Reprod Immunol 59:175–191

    PubMed  Google Scholar 

  117. Norris S, Collins C, Doherty DG, Smith F, Smith F, McEntee G, Traynor O, Nolan N, Hegarty J, O’Farrelly C (1998) Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J Hepatol 28:84–90

    CAS  PubMed  Google Scholar 

  118. Chan A, Hong DL, Atzberger A, Kollnberger S, Filer AD, Buckley CD et al (2007) CD56bright human NK cells differentiate into CD56dim cells: role of contact with peripheral fibroblasts. J Immunol 179:89–94

    CAS  PubMed  Google Scholar 

  119. Zheng X, Wang Y, Wei H, Ling B, Sun R, Tian Z (2008) Bcl-xL is associated with the anti-apoptotic effect of IL-15 on the survival of CD56(dim) natural killer cells. Mol Immunol 45:2559–2569

    CAS  PubMed  Google Scholar 

  120. Peritt D, Robertson S, Gri G, Showe L, Aste-Amezaga M, Trinchieri G (1998) Cutting edge: differentiation of human NK cells into NK1 and NK2 subsets. J Immunol 161:5821–5824

    CAS  PubMed  Google Scholar 

  121. Deniz G, Akdis M, Aktas E, Blaser K, Akdis CA (2002) Huamn NK1 and NK2 subsets determined by purification of IFN-γ-secreting and IFN-γ-nonsecreting NK cells. Eur J Immunol 32:879–884

    CAS  PubMed  Google Scholar 

  122. Chakir H, Camilucci AA, Filion LG, Webb JR (2000) Differentiation of murine NK cells into distinct subsets based on variable expression of the IL-12Rβ2 subunit. J Immunol 165:4985–4993

    CAS  PubMed  Google Scholar 

  123. Wei H, Zhang J, Xiao W, Feng J, Sun R, Tian Z (2005) Involvement of human natural killer cells in asthma pathogenesis: Natural killer cell 2 cells in type 2 cytokine predominance. J Allergy Clin Immunol 115:841–847

    CAS  PubMed  Google Scholar 

  124. Zhang J, Sun R, Liu J, Wang L, Tian Z (2006) Reverse of NK cytolysis resistance of type II cytokine predominant-human tumor cells. Int Immunopharmacol 6:1176–1180

    CAS  PubMed  Google Scholar 

  125. Wei H, Zheng X, Lou D, Zhang L, Zhang R, Sun R, Tian Z (2005) Tumor-induced suppression of interferon-gamma production and enhancement of interleukin-10 production by natural killer (NK) cells: paralleled to CD4+ T cells. Mol Immunol 42:1023–1031

    CAS  PubMed  Google Scholar 

  126. Hayakawa Y, Smyth MJ (2006) CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J Immunol 176:1517–1524

    CAS  PubMed  Google Scholar 

  127. Hayakawa Y, Huntington ND, Nutt SL, Smyth MJ (2006) Functional subsets of mouse natural killer cells. Immunol Rev 214:47–55

    CAS  PubMed  Google Scholar 

  128. Silva A, Andrews DM, Brooks AG, Smyth MJ, Hayakawa Y (2008) Application of CD27 as a marker for distinguishing human NK cell subsets. Int Immunol 20:625–630

    CAS  PubMed  Google Scholar 

  129. Vossen MT, Matmati M, Hertoghs KM, Baars PA, Gent MR, Leclercq G et al (2008) CD27 defines phenotypically and functionally different human NK cell subsets. J Immunol 180:3739–3745

    CAS  PubMed  Google Scholar 

  130. Vosshenrich CA, García-Ojeda ME, Samson-Villéger SI, Pasqualetto V, Enault L, Richard-Le Goff O et al (2006) A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat Immunol 7:1217–1224

    CAS  PubMed  Google Scholar 

  131. Blasius AL, Barchet W, Cella M, Colonna M (2007) Development and function of murine B220+CD11c+NK1.1+ cells identify them as a subset of NK cells. J Exp Med 204:2561–2568

    CAS  PubMed  Google Scholar 

  132. Vosshenrich CA, Lesjean-Pottier S, Hasan M, Richard-Le Goff O, Corcuff E, Mandelboim O, Di Santo JP (2007) CD11cloB220+ interferon-producing killer dendritic cells are activated natural killer cells. J Exp Med 204:2569–2578

    CAS  PubMed  Google Scholar 

  133. Caminschi I, Ahmet F, Heger K, Brady J, Nutt SL, Vremec D et al (2007) Putative IKDCs are functionally and developmentally similar to natural killer cells, but not to dendritic cells. J Exp Med 204:2579–2590

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tian, Z., Zhang, C. (2010). The Regulatory Natural Killer Cells. In: Zimmer, J. (eds) Natural Killer Cells. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02309-5_20

Download citation

Publish with us

Policies and ethics