NK Cells, NKT Cells, and KIR in Solid Organ Transplantation

  • Cam-Tien Le
  • Katja KotschEmail author


In solid organ transplantation, natural killer (NK) cells have emerged as a particular focus of interest because of their ability to distinguish allogeneic major histocompatibility complex (MHC) antigens and their potent cytolytic activity. On the basis of the potential relevance of this, NK cells have recently been shown to participate in the immune response in both acute and chronic rejection of solid organ allografts. Meanwhile, it has been demonstrated by several experimental and clinical studies that NK cells and natural killer T (NKT) cells can determine transplant survival by rejecting an allograft not directly but indirectly by influencing the alloreactivity of T cells or by killing antigen-presenting cells (APCs). Moreover, NK cells are influenced by immuno-suppressive regimens such as calcineurin inhibitors, steroids, or therapeutic antibodies. Recent findings suggest that NK cells also play a profound role in allograft tolerance induction, suggesting that the role of this lymphocyte subset in graft rejection and tolerance induction needs to be reconsidered.


Natural Killer Cell Human Leukocyte Antigen Major Histocompatibility Complex Class iNKT Cell CD56bright Natural Killer Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cecka JM (1994) Outcome statistics of renal transplants with an emphasis on long-term survival. Clin Transplant 8:324–327PubMedGoogle Scholar
  2. 2.
    Matas AJ, Gillingham KJ, Humar A, Dunn DL, Sutherland DE, Najarian JS (2000) Immunologic and nonimmunologic factors: different risks for cadaver and living donor transplantation. Transplantation 69:54–58PubMedGoogle Scholar
  3. 3.
    Prommool S, Jhangri GS, Cockfield SM, Halloran PF (2000) Time dependency of factors affecting renal allograft survival. J Am Soc Nephrol 11:565–573PubMedGoogle Scholar
  4. 4.
    Shoskes DA, Cecka JM (1998) Deleterious effects of delayed graft function in cadaveric renal transplant recipients independent of acute rejection. Transplantation 66:1697–1701PubMedGoogle Scholar
  5. 5.
    Terasaki PI, Cecka JM, Gjertson DW, Takemoto S (1995) High survival rates of kidney transplants from spousal and living unrelated donors. N Engl J Med 333:33–36Google Scholar
  6. 6.
    Lanier LL (1995) The role of natural killer cells in transplantation. Curr Opin Immunol 7:626–631PubMedGoogle Scholar
  7. 7.
    Miller JS, Verfaillie C, McGlave P (1999) The generation of human natural killer cells from CD34+/DR− primitive progenitors in long-term bone marrow culture. Blood 80:2182–2187Google Scholar
  8. 8.
    Lian RH, Kumar V (2002) Murine natural killer cell progenitors and their requirements for development. Semin Immunol 14:453–460PubMedGoogle Scholar
  9. 9.
    Herberman RB, Nunn ME, Lavrin DH (1975) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer 16:216–229PubMedGoogle Scholar
  10. 10.
    Kiessling R, Klein E, Wigzell H (1975) "Natural" killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5:112–117PubMedGoogle Scholar
  11. 11.
    Herberman RB, Nunn ME, Holden HT, Lavrin DH II (1975) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer 16:230–239PubMedGoogle Scholar
  12. 12.
    Allavena P, Damia G, Colombo T, Maggioni D, D’Incalci M, Mantovani A (1989) Lymphokine-activated killer (LAK) and monocyte-mediated cytotoxicity on tumor cell lines resistant to antitumor agents. Cell Immunol 120:250–258PubMedGoogle Scholar
  13. 13.
    Landay AL, Zarcone D, Grossi CE, Bauer K (1987) Relationship between target cell cycle and susceptibility to natural killer lysis. Cancer Res 47:2767–2770PubMedGoogle Scholar
  14. 14.
    Lanier LL, Testi R, Bindl J, Phillips JH (1989) Identity of Leu-19 (CD56) leukocyte differentiation antigen and neural cell adhesion molecule. J Exp Med 169:2233–2238PubMedGoogle Scholar
  15. 15.
    Ritz J, Schmidt RE, Michon J, Hercend T, Schlossman SF (1988) Characterization of functional surface structures on human natural killer cells. Adv Immunol 42:181–211PubMedGoogle Scholar
  16. 16.
    Koo GC, Peppard JR (1984) Establishment of monoclonal anti-NK-1.1 antibody. Hybridoma 3:301–303PubMedGoogle Scholar
  17. 17.
    Sentman CL, Kumar V, Koo G, Bennett M (1989) Effector cell expression of NK1.1, a murine natural killer cell-specific molecule, and ability of mice to reject bone marrow allografts. J Immunol 142:1847–1853PubMedGoogle Scholar
  18. 18.
    Moore TA, von Freeden-Jeffry U, Murray R, Zlotnik A (1996) Inhibition of gamma delta T cell development and early thymocyte maturation in IL-7 2 /2 mice. J Immunol 157:2366–2373PubMedGoogle Scholar
  19. 19.
    Charley MR, Mikhael A, Bennett M, Gilliam JN, Sontheimer RD (1983) Prevention of lethal, minor-determinate graft-host disease in mice by the in vivo administration of anti-asialo GM1. J Immunol 131:2101–2103PubMedGoogle Scholar
  20. 20.
    Bendelac A, Rivera MN, Park SH, Roark JH (1997) Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 15:535–562PubMedGoogle Scholar
  21. 21.
    Matsuda JL, Naidenko OV, Gapin L, Nakayama T, Taniguchi M, Wang CR, Koezuka Y, Kronenberg M (2000) Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp Med 192:741–754PubMedGoogle Scholar
  22. 22.
    Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004) NKT cells: what's in a name? Nat Rev Immunol 4:231–237PubMedGoogle Scholar
  23. 23.
    Lee PT, Putnam A, Benlagha K, Teyton L, Gottlieb PA, Bendelac A (2002) Testing the NKT cell hypothesis of human IDDM pathogenesis. J Clin Invest 110:793–800PubMedGoogle Scholar
  24. 24.
    Ljunggren HG, Karre K (1990) In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11:237–244PubMedGoogle Scholar
  25. 25.
    Braud VM, Allan DS, O'Callaghan CA, Söderström K, D'Andrea A, Ogg GS, Lazetic S, Young NT, Bell JI, Phillips JH, Lanier LL, McMichael AJ (1998) HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391:795–799PubMedGoogle Scholar
  26. 26.
    Gunturi A, Berg RE, Forman J (2004) The role of CD94/NKG2 in innate and adaptive immunity. Immunol Res 30:29–34PubMedGoogle Scholar
  27. 27.
    Karlhofer FM, Ribaudo RK, Yokoyama WM (1992) MHC Class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 358:66–70PubMedGoogle Scholar
  28. 28.
    Natarajan K, Dimasi N, Wang J, Mariuzza RA, Margulies DH (2002) Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination. Annu Rev Immunol 20:853–885PubMedGoogle Scholar
  29. 29.
    Colucci F, Di Santo JP, Leibson PJ (2002) Natural killer cell activation in mice and men: different triggers for similar weapons? Nat Immunol 3:807–813PubMedGoogle Scholar
  30. 30.
    Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3:781–790PubMedGoogle Scholar
  31. 31.
    Arnon TI, Lev M, Katz G, Chernobrov Y, Porgador A, Mandelboim O (2001) Recognition of viral hemagglutinins by NKp44 but not by NKp30. Eur J Immunol 31:2680–2689PubMedGoogle Scholar
  32. 32.
    Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, Bushkin Y, Davis DM, Strominger JL, Yewdell JW, Porgador A (2001) Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409:1055–1060PubMedGoogle Scholar
  33. 33.
    Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, Cantoni C, Grassi J, Marcenaro S, Reymond N, Vitale M, Moretta L, Lopez M, Moretta A (2003) Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 198:557–567PubMedGoogle Scholar
  34. 34.
    Brown MH, Boles K, van der Merwe PA, Kumar V, Mathew PA, Barclay AN (1998) 2B4, the natural killer and T cell immunoglobulin superfamily surface protein, is a ligand for CD48. J Exp Med 188:2083–2090PubMedGoogle Scholar
  35. 35.
    Latchman Y, McKay PF, Reiser H (1998) Identification of the 2B4 molecule as a counter-receptor for CD48. J Immunol 161:5809–5812PubMedGoogle Scholar
  36. 36.
    Blancho G, Buzelin F, Dantal J, Hourmant M, Cantarovich D, Baatard R, Bonneville M, Vie H, Bugeon L, Soulillou JP (1992) Evidence that early acute renal failure may be mediated by CD3− CD16+ cells in a kidney graft recipient with large granular lymphocyte proliferation. Transplantation 53:1242–1247PubMedGoogle Scholar
  37. 37.
    Heidecke CD, Araujo JL, Kupiec-Weglinski JW, Abbud-Filho M, Araneda D, Stadler J, Siewert J, Strom TB, Tilney NL (1985) Lack of evidence for an active role for natural killer cells in acute rejection of organ allografts. Transplantation 4:441–444Google Scholar
  38. 38.
    Nemlander A, Saksela E, Häyry P (1983) Are “natural killer” cells involved in allograft rejection? Eur J Immunol 13:348–350PubMedGoogle Scholar
  39. 39.
    Petersson E, Qi Z, Ekberg H, Ostraat O, Dohlsten M, Hedlund G (1997) Activation of alloreactive natural killer cells is resistant to cyclosporine. Transplantation 63:1138–1144PubMedGoogle Scholar
  40. 40.
    Petersson E, Ostraat O, Ekber H, Hansson J, Simanaitis M, Brodin T, Dohlsten M, Hedlund G (1997) Allogeneic heart transplantation activates alloreactive NK cells. Cell Immunol 175:25–32PubMedGoogle Scholar
  41. 41.
    Ayalon O, Hughes EA, Cresswell P, Lee J, O'Donnell L, Pardi R, Bender JR (1998) Induction of transporter associated with antigen processing by interferon gamma confers endothelial cell cytoprotection against natural killer-mediated lysis. Proc Natl Acad Sci USA 95:2435–2440PubMedGoogle Scholar
  42. 42.
    McDouall RM, Batten P, McCormack A, Yacoub MH, Rose ML (1997) MHC class II expression on human heart microvascular endothelial cells: exquisite sensitivity to interferon-gamma and natural killer cells. Transplantation 64:1175–1180PubMedGoogle Scholar
  43. 43.
    Timonen T, Patarroyo M, Gahmberg CG (1988) CD11a-c/CD18 and GP84 (LB-2) adhesion molecules on human large granular lymphocytes and their participation in natural killing. J Immunol 141:1041–1046PubMedGoogle Scholar
  44. 44.
    Watson CA, Pezelbauer P, Zhou J, Pardi R, Bender JR (1995) Contact-dependent endothelial class II HLA gene activation induced by NK cells is mediated by IFN-gamma-dependent and -independent mechanisms. J Immunol 154:3222–3233PubMedGoogle Scholar
  45. 45.
    Markus PM, van den Brink M, Cai X, Harnaha J, Palomba L, Hiserodt JC, Cramer DV (1991) Effect of selective depletion of natural killer cells on allograft rejection. Transplant Proc 23:178–179PubMedGoogle Scholar
  46. 46.
    Maier S, Tertilt C, Chambron N, Gerauer K, Hüser N, Heidecke CD, Pfeffer K (2001) Inhibition of natural killer cells results in acceptance of cardiac allografts in CD28-/- mice. Nat Med 5:557–562Google Scholar
  47. 47.
    McNerney ME, Lee KM, Zhou P, Molinero L, Mashayekhi M, Guzior D, Sattar H, Kuppireddi S, Wang CR, Kumar V, Alegre ML (2006) Role of natural killer cell subsets in cardiac allograft rejection. Am J Transplant 6:505–513PubMedGoogle Scholar
  48. 48.
    Kim J, Chang CK, Hayden T, Liu FC, Benjamin J, Hamerman JA, Lanier LL, Kang SM (2007) The activating immunoreceptor NKG2D and its ligands are involved in allograft transplant rejection. J Immunol 179:6416–6420PubMedGoogle Scholar
  49. 49.
    Hankey KG, Drachenberg CB, Papadimitriou JC, Klassen DK, Philosophe B, Bartlett ST, Groh V, Spies T, Mann DL (2002) MIC expression in renal and pancreatic allografts. Transplantation 73:304–306PubMedGoogle Scholar
  50. 50.
    Sumitran-Holgersson S, Wilczek HE, Holgersson J, Söderström K (2002) Identification of the nonclassical HLA molecules, mica, as targets for humoral immunity associated with irreversible rejection of kidney allografts. Transplantation 74:268–277PubMedGoogle Scholar
  51. 51.
    Zhang ZX, Wang S, Huang X, Min WP, Sun H, Liu W, Garcia B, Jevnikar AM (2008) NK cells induce apoptosis in tubular epithelial cells and contribute to renal ischemia-reperfusion injury. J Immunol 181:7489–7498PubMedGoogle Scholar
  52. 52.
    Coulson MT, Jablonski P, Howden BO, Thomson NM, Stein AN (2005) Beyond operational tolerance: effect of ischemic injury on development of chronic damage in renal grafts. Transplantation 80:353–361PubMedGoogle Scholar
  53. 53.
    Uehara S, Chase CM, Kitchens WH, Rose HS, Colvin RB, Russell PS, Madsen JC (2005) NK cells can trigger allograft vasculopathy: the role of hybrid resistance in solid organ allografts. J Immunol 175:3424–3430PubMedGoogle Scholar
  54. 54.
    Kroemer A, Xiao X, Degauque N, Edtinger K, Wei H, Demirci G, Li XC (2008) The innate NK cells, allograft rejection, and a key role for IL-15. J Immunol 180:7818–7826PubMedGoogle Scholar
  55. 55.
    Kondo T, Morita D, Watarai Y, Auerbach MB, Taub DD, Novick AC, Toma H, Fairchild RL (2000) Early increased chemokine expression and production in murine allogeneic skin grafts is mediated by natural killer cells. Transplantation 69:969–977PubMedGoogle Scholar
  56. 56.
    Taub DD, Sayers TJ, Carter CR, Ortaldo JR (1995) Alpha and beta chemokines induce NK cell migration and enhance NK-mediated cytolysis. J Immunol 155:3877–3888PubMedGoogle Scholar
  57. 57.
    Obara H, Nagasaki K, Hsieh CL, Ogura Y, Esquivel CO, Martinez OM, Krams SM (2005) IFN-gamma, produced by NK cells that infiltrate liver allografts early after transplantation, links the innate and adaptive immune responses. Am J Transplant 5:2094–2103PubMedGoogle Scholar
  58. 58.
    Uppaluri R, Sheehan KC, Wang L, Bui JD, Brotman JJ, Lu B, Gerard C, Hancock WW, Schreiber RD (2008) Prolongation of cardiac and islet allograft survival by a blocking hamster anti-mouse CXCR3 monoclonal antibody. Transplantation 86:137–147PubMedGoogle Scholar
  59. 59.
    Hancock WW, Lu B, Gao W, Csizmadia V, Faia K, King JA, Smiley ST, Ling M, Gerard NP, Gerard C (2000) Requirement of the chemokine receptor CXCR3 for acute allograft rejection. J Exp Med 192:1515–1520PubMedGoogle Scholar
  60. 60.
    Gao W, Topham PS, King JA, Smiley ST, Csizmadia V, Lu B, Gerard CJ, Hancock WW (2000) Targeting of the chemokine receptor CCR1 suppresses development of acute and chronic cardiac allograft rejection. J Clin Invest 105:35–44PubMedGoogle Scholar
  61. 61.
    Hüser N, Tertilt C, Gerauer K, Maier S, Traeger T, Assfalg V, Reiter R, Heidecke CD, Pfeffer K (2005) CCR4-deficient mice show prolonged graft survival in a chronic cardiac transplant rejection model. Eur J Immunol 35:128–138PubMedGoogle Scholar
  62. 62.
    Haskell CA, Hancock WW, Salant DJ, Gao W, Csizmadia V, Peters W, Faia K, Fituri O, Rottman JB, Charo IF (2001) Targeted deletion of CX(3)CR1 reveals a role for fractalkine in cardiac allograft rejection. J Clin Invest 108:679–688PubMedGoogle Scholar
  63. 63.
    Austyn JM, Larsen CP (1990) Migration patterns of dendritic leukocytes. Implications for transplantation. Transplantation 49:1–7PubMedGoogle Scholar
  64. 64.
    Beilke JN, Kuhl NR, Van Kaer L, Gill RG (2005) NK cells promote islet allograft tolerance via a perforin-dependent mechanism. Nat Med 11:1059–1065PubMedGoogle Scholar
  65. 65.
    Coudert JD, Coureau C, Guéry JC (2002) Preventing NK cell activation by donor dendritic cells enhances allospecific CD4 T cell priming and promotes Th type 2 responses to transplantation antigens. J Immunol 169:2979–2987PubMedGoogle Scholar
  66. 66.
    Yu G, Xu X, Vu MD, Kilpatrick ED, Li XC (2006) NK cells promote transplant tolerance by killing donor antigen-presenting cells. J Exp Med 203:1851–1858PubMedGoogle Scholar
  67. 67.
    Laffont S, Seillet C, Ortaldo J, Coudert JD, Guéry JC (2008) Natural killer cells recruited into lymph nodes inhibit alloreactive T-cell activation through perforin-mediated killing of donor allogeneic dendritic cells. Blood 112:661–671PubMedGoogle Scholar
  68. 68.
    Ikehara Y, Yasunami Y, Kodama S, Maki T, Nakano M, Nakayama T, Taniguchi M, Ikeda S (2000) CD4(+) Valpha14 natural killer T cells are essential for acceptance of rat islet xenografts in mice. J Clin Invest 105:1761–1767PubMedGoogle Scholar
  69. 69.
    Seino KI, Fukao K, Muramoto K, Yanagisawa K, Takada Y, Kakuta S, Iwakura Y, Van Kaer L, Takeda K, Nakayama T, Taniguchi M, Bashuda H, Yagita H, Okumura K (2001) Requirement for natural killer T (NKT) cells in the induction of allograft tolerance. Proc Natl Acad Sci USA 98:2577–2581PubMedGoogle Scholar
  70. 70.
    Iwai T, Tomita Y, Shimizu I, Kajiwara T, Onzuka T, Okano S, Yasunami Y, Yoshikai Y, Nomoto K, Tominaga R (2007) The immunoregulatory roles of natural killer T cells in cyclophosphamide-induced tolerance. Transplantation 84:1686–1695PubMedGoogle Scholar
  71. 71.
    Jiang X, Shimaoka T, Kojo S, Harada M, Watarai H, Wakao H, Ohkohchi N, Yonehara S, Taniguchi M, Seino K (2005) Cutting edge: critical role of CXCL16/CXCR6 in NKT cell trafficking in allograft tolerance. J Immunol 175:2051–2055PubMedGoogle Scholar
  72. 72.
    Sonoda KH, Taniguchi M, Stein-Streilein J (2002) Long-term survival of corneal allografts is dependent on intact CD1d-reactive NKT cells. J Immunol 168:2028–2034PubMedGoogle Scholar
  73. 73.
    Watte CM, Nakamura T, Lau CH, Ortaldo JR, Stein-Streilein J (2008) Ly49 C/I-dependent NKT cell-derived IL-10 is required for corneal graft survival and peripheral tolerance. J Leukoc Biol 83:928–935PubMedGoogle Scholar
  74. 74.
    Jiang X, Kojo S, Harada M, Ohkohchi N, Taniguchi M, Seino KI (2007) Mechanism of NKT cell-mediated transplant tolerance. Am J Transplant 7:482–490Google Scholar
  75. 75.
    Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, Martelli MF, Velardi A (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100PubMedGoogle Scholar
  76. 76.
    Ruggeri L, Mancusi A, Capanni M, Urbani E, Carotti A, Aloisi T, Stern M, Pende D, Perruccio K, Burchielli E, Topini F, Bianchi E, Aversa F, Martelli MF, Velardi A (2007) Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood 110:433–440PubMedGoogle Scholar
  77. 77.
    Carrington M, Norman, P (2003) The KIR Gene Cluster. NAtional Library of Medicine (US), National Center for Biotechnology Information. Available from:
  78. 78.
    Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274PubMedGoogle Scholar
  79. 79.
    Williams AP, Bateman AR, Khakoo SI (2005) Hanging in the balance. KIR and their role in disease. Mol Interv 5:226–240PubMedGoogle Scholar
  80. 80.
    Gumperz JE, Litwin V, Phillips JH, Lanier LL, Parham P (1995) The Bw4 public epitope of HLA-B molecules confers reactivity with natural killer cell clones that express NKB1, a putative HLA receptor. J Exp Med 181:1133–1144PubMedGoogle Scholar
  81. 81.
    Dohring C, Scheidegger D, Samaridis J, Cella M, Colonna M (1996) A human killer inhibitory receptor specific for HLA-A1, 2. J Immunol 156:3098–3101PubMedGoogle Scholar
  82. 82.
    Norman PJ, Carrington CV, Byng M, Maxwell LD, Curran MD, Stephens HA, Chandanayingyong D, Verity DH, Hameed K, Ramdath DD, Vaughan RW (2002) Natural killer cell immunoglobulin-like receptor (KIR) locus profiles in African and South Asian populations. Genes Immun 3:86–95PubMedGoogle Scholar
  83. 83.
    Hsu KC, Chida S, Geraghty DE, Dupont B (2002) The killer cell immunoglobulin-like receptor (KIR) genomic region: gene-order, haplotypes and allelic polymorphism. Immunol Rev 190:40–52PubMedGoogle Scholar
  84. 84.
    Tran TH, Mytilineos J, Scherer S, Laux G, Middleton D, Opelz G (2005) Analysis of KIR ligand incompatibility in human renal transplantation. Transplantation 80:1121–1123PubMedGoogle Scholar
  85. 85.
    Bishara A, Brautbar C, Zamir G, Eid A, Safadi R (2005) Impact of HLA-C and Bw epitopes disparity on liver transplantation outcome. Hum Immunol 66:1099–1105PubMedGoogle Scholar
  86. 86.
    Fan QR, Long EO, Wiley DC (2001) Crystal structure of the human natural killer cell inhibitory receptor KIR2DL1-HLA-Cw4 complex. Nat Immunol 2:452–460PubMedGoogle Scholar
  87. 87.
    Ahlenstiel G, Martin MP, Gao X, Carrington M, Rehermann B (2008) Distinct KIR/HLA compound genotypes affect the kinetics of human antiviral natural killer cell responses. J Clin Invest 118:1017–1026PubMedGoogle Scholar
  88. 88.
    Hanvesakul R, Spencer N, Cook M, Gunson B, Hathaway M, Brown R, Nightingale P, Cockwell P, Hubscher SG, Adams DH, Moss P, Briggs D (2008) Donor HLA-C genotype has a profound impact on the clinical outcome following liver transplantation. Am J Transplant 8:1931–1941PubMedGoogle Scholar
  89. 89.
    Kunert K, Seiler M, Mashreghi MF, Klippert K, Schönemann C, Neumann K, Pratschke J, Reinke P, Volk HD, Kotsch K (2007) KIR/HLA ligand incompatibility in kidney transplantation. Transplantation 84:1527–1533PubMedGoogle Scholar
  90. 90.
    Vampa ML, Norman PJ, Burnapp L, Vaughan RW, Sacks SH, Wong W (2003) Natural killer-cell activity after human renal transplantation in relation to killer immunoglobulin-like receptors and human leukocyte antigen mismatch. Transplantation 76:1220–8PubMedGoogle Scholar
  91. 91.
    Kwakkel-van Erp JM, van de Graaf EA, Paantjens AW, van Ginkel WG, Schellekens J, van Kessel DA, van den Bosch JM, Otten HG (2008) The killer immunoglobulin-like receptor (KIR) group A haplotype is associated with bronchiolitis obliterans syndrome after lung transplantation. J Heart Lung Transplant 27:995–1001PubMedGoogle Scholar
  92. 92.
    Kreijveld E, van der Meer A, Tijssen HJ, Hilbrands LB, Joosten I (2007) KIR gene and KIR ligand analysis to predict graft rejection after renal transplantation. Transplantation 84:1045–1051PubMedGoogle Scholar
  93. 93.
    Chen C, Busson M, Rocha V, Appert ML, Lepage V, Dulphy N, Haas P, Socié G, Toubert A, Charron D, Loiseau P (2006) Activating KIR genes are associated with CMV reactivation and survival after non-T-cell depleted HLA-identical sibling bone marrow transplantation for malignant disorders. Bone Marrow Transplant 38:437–444PubMedGoogle Scholar
  94. 94.
    Stern M, Elsässer H, Hönger G, Steiger J, Schaub S, Hess C (2008) The number of activating KIR genes inversely correlates with the rate of CMV infection/reactivation in kidney transplant recipients. Am J Transplant 8:1312–1317PubMedGoogle Scholar
  95. 95.
    Hadaya K, de Rham C, Bandelier C, Ferrari-Lacraz S, Jendly S, Berney T, Buhler L, Kaiser L, Seebach JD, Tiercy JM, Martin PY, Villard J (2008) Natural killer cell receptor repertoire and their ligands, and the risk of CMV infection after kidney transplantation. Am J Transplant 8:2674–2683PubMedGoogle Scholar
  96. 96.
    Lefkowitz M, Kornbluth J, Tomaszewski JE, Jorkasky DK (1988) Natural killer-cell activity in cyclosporine-treated renal allograft recipients. J Clin Immunol 8:121–127PubMedGoogle Scholar
  97. 97.
    Luo H, Chen H, Daloze P, Wu J (1992) Effects of rapamycin on human HLA-unrestricted cell killing. Clin Immunol Immunopathol 65:60–64PubMedGoogle Scholar
  98. 98.
    Wang H, Grzywacz B, Sukovich D, McCullar V, Cao Q, Lee AB, Blazar BR, Cornfield DN, Miller JS, Verneris MR (2007) The unexpected effect of cyclosporin A on CD56+CD16- and CD56+CD16+ natural killer cell subpopulations. Blood 110:1530–1539PubMedGoogle Scholar
  99. 99.
    Chiossone L, Vitale C, Cottalasso F, Moretti S, Azzarone B, Moretta L, Mingari MC (2007) Molecular analysis of the methylprednisolone-mediated inhibition of NK-cell function: evidence for different susceptibility of IL-2- versus IL-15-activated NK cells. Blood 109:3767–3775PubMedGoogle Scholar
  100. 100.
    Wai LE, Fujiki M, Takeda S, Martinez OM, Krams SM (2008) Rapamycin, but not cyclosporine or FK506, alters natural killer cell function. Transplantation 85:145–149PubMedGoogle Scholar
  101. 101.
    Bielekova B, Catalfamo M, Reichert-Scrivner S, Packer A, Cerna M, Waldmann TA, McFarland H, Henkart PA, Martin R (2006) Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2Ralpha-targeted therapy (daclizumab) in multiple sclerosis. Proc Natl Acad Sci USA 103:5941–5946PubMedGoogle Scholar
  102. 102.
    Bhat R, Watzl C (2007) Serial killing of tumor cells by human natural killer cells – enhancement by therapeutic antibodies. PLoS ONE 28:326Google Scholar
  103. 103.
    Stauch D, Dernier A, Sarmiento Marchese E, Kunert K, Volk HD, Pratschke J, Kotsch K (2009)Targeting of Natural Killer cells by rabbit antithymocyte globulin and Campath-1H: similar effects independent of specificity. PLoS ONE 4:e4709Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institut für Medizinische ImmunologieCharité-Universitätsmedizin BerlinBerlinGermany

Personalised recommendations