Skip to main content

Fuzzy Sets for Image Texture Modelling Based on Human Distinguishability of Coarseness

  • Conference paper
Fuzzy Logic and Applications (WILF 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5571))

Included in the following conference series:

Abstract

In this paper, the “coarseness” texture property is modelled by means of fuzzy sets, relating representative coarseness measures (our reference set) with the human perception of this type of feature. In our study, a wide variety of measures are analyzed, and the coarseness human perception are collected from polls filled by subjects. The capability of each measure to discriminate different coarseness degrees is analyzed, taking into account this capability for defining the membership function.

This work has been partially supported by the Andalusian Government under the TIC1570 and TIC249.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amadasun, M., King, R.: Textural features corresponding to textural properties. IEEE Transactions on Systems, Man and Cybernetics 19(5), 1264–1274 (1989)

    Article  Google Scholar 

  2. Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. IEEE Transactions on Systems, Man and Cybernetics 8, 460–473 (1978)

    Article  Google Scholar 

  3. Haralick, R.: Statistical and structural approaches to texture. Proceedings IEEE 67(5), 786–804 (1979)

    Article  Google Scholar 

  4. Wang, C., Wang, H., Mei, Q.: Texture segmentation based on an adaptively fuzzy clustering neural network. In: Proc. of 2004 International Conference on Machine Learning and Cybernetics, vol. 2, pp. 1173–1176 (2004)

    Google Scholar 

  5. Lin, H., Chiu, C., Yang, S.: Finding textures by textual descriptions, visual examples, and relevance feedbacks. Pattern Recognition Letters 24(14), 2255–2267 (2003)

    Article  MATH  Google Scholar 

  6. Yager, R.: On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on Systems, Man and Cybernetics 18(1), 183–190 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hochberg, Y., Tamhane, A.: Multiple Comparison Procedures. Wiley, Chichester (1987)

    Book  MATH  Google Scholar 

  8. Abbadeni, N., Ziou, N., Wang, D.: Autocovariance-based perceptual textural features corresponding to human visual perception. In: Proc. of 15th International Conference on Pattern Recognition., vol. 3, pp. 901–904 (2000)

    Google Scholar 

  9. Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)

    Article  Google Scholar 

  10. Galloway, M.: Texture analysis using gray level run lengths. Computer Graphics and Image Processing 4, 172–179 (1975)

    Article  Google Scholar 

  11. Peleg, S., Naor, J., Hartley, R., Avnir, D.: Multiple resolution texture analysis and classification. IEEE Transactions on Pattern Analysis and Machine Intelligence (4), 518–523 (1984)

    Article  Google Scholar 

  12. Kim, S., Choi, K., Lee, D.: Texture classification using run difference matrix. In: Proc. of IEEE 1991 Ultrasonics Symposium, vol. 2, pp. 1097–1100 (1991)

    Google Scholar 

  13. Weszka, J., Dyer, C., Rosenfeld, A.: A comparative study of texture measures for terrain classification. IEEE Transactions on Systems, Man and Cybernetics 6, 269–285 (1976)

    Article  MATH  Google Scholar 

  14. Sun, C., Wee, W.: Neighboring gray level dependence matrix for texture classification. Computer Vision, Graphics and Image Processing 23, 341–352 (1983)

    Article  Google Scholar 

  15. Newsam, S., Kammath, C.: Retrieval using texture features in high resolution multi-spectral satellite imagery. In: Data Mining and Knowledge Discovery: Theory, Tools, and Technology VI, SPIE Defense and Security (2004)

    Google Scholar 

  16. Yoshida, H., Casalino, D., Keserci, B., Coskun, A., Ozturk, O., Savranlar, A.: Wavelet-packet-based texture analysis for differentiation between benign and malignant liver tumours in ultrasound images. Physics in Medicine and Biology 48, 3735–3753 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chamorro-Martínez, J., Martínez-Jiménez, P. (2009). Fuzzy Sets for Image Texture Modelling Based on Human Distinguishability of Coarseness. In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds) Fuzzy Logic and Applications. WILF 2009. Lecture Notes in Computer Science(), vol 5571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02282-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02282-1_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02281-4

  • Online ISBN: 978-3-642-02282-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics