Skip to main content

Breast Cancer Classification Applying Artificial Metaplasticity

  • Conference paper
Bioinspired Applications in Artificial and Natural Computation (IWINAC 2009)

Abstract

In this paper we are apply Artificial Metaplasticity MLP (MMLPs) to Breast Cancer Classification. Artificial Metaplasticity is a novel ANN training algorithm that gives more relevance to less frequent training patterns and subtract relevance to the frequent ones during training phase, achieving a much more efficient training, while at least maintaining the Multilayer Perceptron performance. Wisconsin Breast Cancer Database (WBCD) was used to train and test MMLPs. WBCD is a well-used database in machine learning, neural networks and signal processing. Experimental results show that MMLPs reach better accuracy than any other recent results.

His research has been partially supported by National (MICINN) and Madrid (CAM) Spanish institutions under the following projects: PTFNN (MCINN ref: AGL2006-12689/AGR). The author wishes to thank to The National Foundation of Science Technology and Innovation (FONACIT) of the Bolivariana Republic of Venezuela for its contribution in the development of his doctoral studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rodrigues, P.S., Giraldi, G.A., Chang, R.-F., Suri, J.S.: Non-extensive entropy for cad systems of breast cancer images. In: Computer Graphics and Image Processing, SIBGRAPI 2006, pp. 121–128 (2006)

    Google Scholar 

  2. Ardekan, R.D., Torabi, M., Fatemizadeh, E.: Breast cancer diagnosis and classification in mr-images using multi-stage classifie. In: Biomedical and Pharmaceutical Engineering, ICBPE 2006, pp. 84–87 (2006)

    Google Scholar 

  3. Subashini, T.S., Ramalingam, V., Palanivel, S.: Breast mass classification based on cytological patterns using rbfnn and svm. Expert Systems with Applications 36, 5284–5290 (2009)

    Article  Google Scholar 

  4. Chao, L., Xue-Wei, L., Hong-Bo, P.: Aplifcation of extension neural network for classification with incomplete survey data. In: Cognitive Informatics, ICCI 2006, pp. 1–3 (2006)

    Google Scholar 

  5. Misra, B.B., Biswal, B.N., Dash, P.K., Panda, G.: Simplified polinomial neural network for classification task in data mining. In: Evolutionary Computation, CEC 2007, pp. 721–728 (2007)

    Google Scholar 

  6. Übeyli, E.: modified mixture of experts for diabetes diagnosis. J. Med. Syst., Springer On-line edn. 1–7, July 30 (2008) doi:10.1007/s10916-008-9191-3

    Google Scholar 

  7. Orozco-Monteagudo, M., Taboada-Crispí, A., Del Toro-Almenares, A.: Training of multilayer perceptron neural networks by using cellular genetic algorithms. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 389–398. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Karabatak, M., Cevdet-Ince, M.: An expert system for detection of breast cancer based on association rules and neural network. Expert Systems with Applications 36, 3465–3469 (2009)

    Article  Google Scholar 

  9. Übeyli, E.D.: Implementing automated diagnostic systems for breast cancer detection. Expert Systems with Applications 33(4), 1054–1062 (2007)

    Article  Google Scholar 

  10. Guijarro-Berdiñas, B., Fontenla-Romero, O., Perez-Sanchez, B., Fraguela, P.: A linear learning method for multilayer perceptrons using least-squares. LNCS, vol. 4225, pp. 365–374. Springer, Heidelberg (2007)

    Google Scholar 

  11. http://archive.ics.uci.edu/ml/datasets.html

  12. Abraham, W.C., Tate, W.P.: Metaplasticity: a new vista across the field of synaptic plasticity. Progress in Neurobiology 52, 303–323 (1997)

    Article  Google Scholar 

  13. Abraham, W.C., Bear, M.F.: Metaplasticity: the plasticity of synaptic plasticity. Trends in Neuroscience 19(4), 126–130 (1996)

    Article  Google Scholar 

  14. Peréz-Otaño, I., Ehlers, M.D.: Homeostatic plasticity and nmda receptor trafficking. Trends in Neuroscience 28, 229–238 (2005)

    Article  Google Scholar 

  15. Hagan, M.T., Demuth, H.B., Beale, M.: Neural network design. PWS Pub. Co., Boston (1996)

    Google Scholar 

  16. Leung, H., Haykin, S.: The complex backpropagation algorithm. IEEE Transactions on Signal Processing 39, 2101–2104 (1991)

    Article  Google Scholar 

  17. Man, K.F., Tang, K.S., Kwong, S.: Genetic algorithms: Concepts and designs. Springer, London (1999)

    Book  MATH  Google Scholar 

  18. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of neural science. McGraw-Hill, New York (2000)

    Google Scholar 

  19. Jedlicka, P.: Synaptic plasticity, metaplasticidad and bcm theory. Institute of Pathophysiology, Medical Faculty. Comenius University Bratislava, Slovakia, vol. 103(4-5), pp. 137–143 (2002)

    Google Scholar 

  20. Kinto, E., Del-Moral-Hernandez, E., Marcano, A., Ropero-Pelaez, J.: A preliminary neural model for movement direction recognition based on biologically plausible plasticity rules. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4528, pp. 628–636. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Ropero-Pelaez, J., Piqueira, J.R.: Biological clues for up-to-date artificial neurons. In: Andina, D., Pham, D.T. (eds.) Computational Intelligence for Engineering and Manufacturing. Springer, The Nederlands (2007)

    Google Scholar 

  22. Andina, D., Jevtić, A., Marcano, A., Barrón-Adame, M.: Error weighting in artificial neural networks learning interpreted as a metaplasticity model. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4527, pp. 244–252. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Andina, D., Antonio, A.-V., Jevtić, A., Fombellida, J.: Artificial metaplasticity can improve artificial neural network learning. In: Andina, D. (Guest ed.) Intelligent Automation and Soft Computing, Special Issue in Signal Processing and Soft Computing, vol. 15(4), pp. 681–694. TSI Press, EEUU (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marcano-Cedeño, A., Buendía-Buendía, F.S., Andina, D. (2009). Breast Cancer Classification Applying Artificial Metaplasticity. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds) Bioinspired Applications in Artificial and Natural Computation. IWINAC 2009. Lecture Notes in Computer Science, vol 5602. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02267-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02267-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02266-1

  • Online ISBN: 978-3-642-02267-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics