Brain-Robot Interface for Controlling a Remote Robot Arm

  • Eduardo Iáñez
  • M. Clara Furió
  • José M. Azorín
  • José Alejandro Huizzi
  • Eduardo Fernández
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5602)


This paper describes a technique based on electroencephalography (EEG) to control a robot arm. This technology could eventually allow people with severe disabilities to control robots that can help them in daily living activities. The EEG-based Brain Computer Interface (BCI) developed consists in register the brain rhythmic activity through a electrodes situated on the scalp in order to differentiate one cognitive process from rest state and use it to control one degree of freedom of the robot arm. In the paper the processing and classifier algorithm are described and an analysis of their parameters has been made with the objective of find the optimum configuration that allow obtaining the best results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dornhege, G., Millán, J.R., Hinterberger, T., McFarland, D., Müller, K.: Towards Brain-Computer Interfacing. MIT Press, Cambridge (2006) (forthcoming)Google Scholar
  2. 2.
    Nicolelis, M.A.L.: Actions from Thoughts. Nature 409, 403–407 (2001)CrossRefGoogle Scholar
  3. 3.
    Obermaier, B., Muller, G.R., Pfurtscheller, G.: Virtual Keyboard Controlled by Spontaneous EEG Activity. IEEE Trans. Neural Sys. Rehab. Eng. 11, 422–426 (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Millán, J.R., Renkensb, F., Mouriñoc, J., Gerstnerb, W.: Brain-actuated interaction. Artificial Intelligence 159, 241–259 (2004)CrossRefGoogle Scholar
  5. 5.
    Chapin, J.K., Moxon, K.A., Markowitz, R.S., Nicolelis, M.A.L.: Real-Time Control of a Robot Arm using Simultaneously Recorded Neurons in the Motor Cortex. Nature Neuroscience 2, 664–670 (1999)CrossRefGoogle Scholar
  6. 6.
    Serruya, M.D., Harsopoulos, N.G., Paninski, L., Fellows, M.R., Donoghue, J.: Instant Neural Control of a Movement Signal. Nature 416, 141–142 (2002)CrossRefGoogle Scholar
  7. 7.
    Bayliss, J.D.: Use of the Evoked Potential P3 Component for Control in a Virtual Environment. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11, 113–116 (2003)CrossRefGoogle Scholar
  8. 8.
    Gao, X., Dignfeng, X., Cheng, M., Gao, S.: A BCI-based Environmental Controller for the Motion-Disabled. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11, 137–140 (2003)CrossRefGoogle Scholar
  9. 9.
    Millán, J.R., Ferrez, P.W., Buttfield, A.: Non Invasive Brain-Machine Interfaces - Final Report. IDIAP Research Institute - ESA (2005)Google Scholar
  10. 10.
    Bashashati, A., Fatourechi, M., Ward, R.K., Birch, G.E.: A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. Journal of Neural Engineering 57, R32–R57 (2007)CrossRefGoogle Scholar
  11. 11.
    Iáñez, E., Azorín, J.M., Fernández, E., Morales, R.: Electrooculography-based Human Interface for Robot Controlling. In: Proceedings of the 13th Annual Conference of the International Functional Electrical Stimulation Society (IFESS), York, Walter de Gruyter-Berlin-New, Freiburg, Germany, vol. 53, pp. 305–307 (2008)Google Scholar
  12. 12.
    Decety, J., Lindgren, M.: Sensation of effort and duration of mentaly executed actions. Scand. J. Psychol. 32, 97–104 (1991)CrossRefGoogle Scholar
  13. 13.
    Clin, J.: Guidelines for standard electrode positions nomenclature. American Electroencephalographic Society. Neurophysiol. 3, 38–42 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Eduardo Iáñez
    • 1
  • M. Clara Furió
    • 2
  • José M. Azorín
    • 1
  • José Alejandro Huizzi
    • 3
  • Eduardo Fernández
    • 2
  1. 1.Virtual Reality and Robotics LabUniversidad Miguel Hernández de ElcheElcheSpain
  2. 2.Bioengineering InstituteUniversidad Miguel Hernández de ElcheElcheSpain
  3. 3.Hospital General Universitario de AlicanteSpain

Personalised recommendations