Advertisement

My Sparring Partner Is a Humanoid Robot

A Parallel Framework for Improving Social Skills by Imitation
  • Tino Lourens
  • Emilia Barakova
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5602)

Abstract

This paper presents a framework for parallel tracking of human hands and faces in real time, and is a partial solution to a larger project on human-robot interaction which aims at training autistic children using a humanoid robot in a realistic non-restricted environment. In addition to the framework, the results of tracking different hand waving patterns are shown. These patterns provide an easy to understand profile of hand waving, and can serve as the input for a classification algorithm.

Keywords

Graphical Processing Unit Autistic Child Humanoid Robot Skin Tone Parallel Framework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barakova, E.I., Lourens, T.: Mirror neuron framework yields representations for robot interaction. Neurocomputing 72(4-6), 895–900 (2009)CrossRefzbMATHGoogle Scholar
  2. 2.
    Chai, D., Ngan, K.N.: Face segmentation using skin-color map in videophone applications. IEEE Transactions on Circuits and Systems for Video Technology 9(4), 551–564 (1999)CrossRefGoogle Scholar
  3. 3.
    Demiris, Y., Khadhouri, B.: Hierarchical attentive multiple models for execution and recognition of actions. Robotics and Autonomous Systems 54, 361–369 (2006)CrossRefGoogle Scholar
  4. 4.
    Demiris, Y., Meltzoff, A.N.: The robot in the crib: A developmental analysis of imitation skills in infants and robots. Infant and Child Development 17, 43–53 (2008)CrossRefGoogle Scholar
  5. 5.
    Hirai, K.: Current and future perspective of Honda humanoid robot. In: IEEE/RSJ International Conference on Intelligent Robotics and Systems, pp. 500–508 (1997)Google Scholar
  6. 6.
    Hirai, K., Hirose, M., Haikawa, Y., Takenake, T.: The development of Honda humanoid robot. In: IEEE International Conference of Robotics and Automation, pp. 1321–1326 (1998)Google Scholar
  7. 7.
    Lourens, T.: Tivipe –tino’s visual programming environment. In: The 28thAnnual International Computer Software & Applications Conference, IEEE COMPSAC 2004, pp. 10–15 (2004)Google Scholar
  8. 8.
    Lourens, T., Barakova, E.I.: Tivipe simulation of a cortical crossing cell model. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 122–129. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Lourens, T., Barakova, E.I.: Orientation contrast sensitive cells in primate v1 –a computational model. Natural Computing 6(3), 241–252 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lourens, T., Barakova, E.I., Okuno, H.G., Tsujino, H.: A computational model of monkey cortical grating cells. Biological Cybernetics 92(1), 61–70 (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    Lourens, T., Barakova, E.I., Tsujino, H.: Interacting modalities through functional brain modeling. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2686, pp. 102–109. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Meltzoff, A.N.: The ’like me’ framework for recognizing and becoming an international agent. Acta Psychologica 124, 26–43 (2007)CrossRefGoogle Scholar
  13. 13.
    Meltzoff, A.N., Moore, M.K.: Newborn infants imitate adult facial gestures. Child Development 54, 702–709 (1983)CrossRefGoogle Scholar
  14. 14.
    Schaal, S.: Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences 3, 233–242 (1999)CrossRefGoogle Scholar
  15. 15.
    Vanderelst, D., Barakova, E.I.: Autonomous parsing of behaviour in a multi-agent setting. In: IEEE IS, pp. 7–13 (2008); An extended version will appear in the International Journal of Intelligent systemsGoogle Scholar
  16. 16.
    Würtz, R.P., Lourens, T.: Corner detection in color images through a multiscale combination of end-stopped cortical cells. Image and Vision Computing 18(6-7), 531–541 (2000)CrossRefGoogle Scholar
  17. 17.
    Zeki, S.: A Vision of the Brain. Blackwell science Ltd., London (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Tino Lourens
    • 1
  • Emilia Barakova
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations