Advertisement

Segmenting Humans from Mobile Thermal Infrared Imagery

  • José Carlos Castillo
  • Juan Serrano-Cuerda
  • Antonio Fernández-Caballero
  • María T. López
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5602)

Abstract

Perceiving the environment is crucial in any application related to mobile robotics research. In this paper, a new approach to real-time human detection through processing video captured by a thermal infrared camera mounted on the indoor autonomous mobile platform mSecurit TM is introduced. The approach starts with a phase of static analysis for the detection of human candidates through some classical image processing techniques such as image normalization and thresholding. Then, the proposal uses Lukas and Kanade optical flow without pyramids algorithm for filtering moving foreground objects from moving scene background. The results of both phases are compared to enhance the human segmentation by infrared camera. Indeed, optical flow will emphasize the foreground moving areas gotten at the initial human candidates detection.

Keywords

Mobile Robot Obstacle Avoidance Human Detection Pedestrian Detection Soft Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benet, G., Blanes, F., Simó, J.E., Pérez, P.: Using infrared sensors for distance measurement in mobile robots. Robotics and Autonomous Systems 40(4), 255–266 (2002)CrossRefGoogle Scholar
  2. 2.
    Bhanu, B., Han, J.: Kinematic-based human motion analysis in infrared sequences. In: Proceedings of the Sixth IEEE Workshop on Applications of Computer Vision, pp. 208–212 (2002)Google Scholar
  3. 3.
    Cherubini, A., Oriolo, G., Macrí, F., Aloise, F., Cincotti, F., Mat, D.: A multimode navigation system for an assistive robotics project. Autonomous Robots 25(4), 383–404 (2008)CrossRefGoogle Scholar
  4. 4.
    Coombs, D., Herman, M., Hong, T., Nashman, M.: Real-time obstacle avoidance using central flow divergence, and peripheral flow. IEEE Transactions on Robotics and Automation 14(1), 49–59 (1998)CrossRefGoogle Scholar
  5. 5.
    Davis, J.W., Sharma, V.: Background-subtraction in thermal imagery using contour saliency. International Journal of Computer Vision 71(2), 161–181 (2007)CrossRefGoogle Scholar
  6. 6.
    Fajen, B.R., Warren, W.H., Temizer, S., Kaelbling, L.P.: A dynamical model of visually-guided steering, obstacle avoidance, and route selection. International Journal of Computer Vision 54(1-3), 13–34 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Garcia, M.A., Solanas, A.: Estimation of distance to planar surfaces and type of material with infrared sensors. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 1, pp. 745–748 (2004)Google Scholar
  8. 8.
    Gascueña, J.M., Fernández-Caballero, A.: Agent-based modeling of a mobile robot to detect and follow humans. In: Håkansson, A., et al. (eds.) KES-AMSTA 2009. LNCS (LNAI), vol. 5559, pp. 80–89. Springer, Heidelberg (2009)Google Scholar
  9. 9.
    Giachetti, A., Campani, M., Torre, V.: The use of optical flow for road navigation. IEEE Transactions on Robotics and Automation 14(1), 34–48 (1998)CrossRefGoogle Scholar
  10. 10.
    Guo, L., Zhang, M., Wang, Y., Liu, G.: Environmental perception of mobile robot. In: Proceedings of the 2006 IEEE International Conference on Information Acquisition, pp. 348–352 (2006)Google Scholar
  11. 11.
    Iwasawa, S., Ebihara, K., Ohya, J., Morishima, S.: Realtime estimation of human body posture from monocular thermal images. In: Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 15–20 (1997)Google Scholar
  12. 12.
    Jung, S.-H., Eledath, J., Johansson, S., Mathevon, V.: Egomotion estimation in monocular infra-red image sequence for night vision applications. In: IEEE Workshop on Applications of Computer Vision, p. 8 (2007)Google Scholar
  13. 13.
    Lookingbill, A., Rogers, J., Lieb, D., Curry, J., Thrun, S.: Reverse optical flow for self-supervised adaptive autonomous robot navigation. International Journal of Computer Vision 74(3), 287–330 (2007)CrossRefGoogle Scholar
  14. 14.
    López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Visual surveillance by dynamic visual attention method. Pattern Recognition 39(11), 2194–2211 (2006)CrossRefGoogle Scholar
  15. 15.
    López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Motion features to enhance scene segmentation in active visual attention. Pattern Recognition Letters 27(5), 469–478 (2006)CrossRefGoogle Scholar
  16. 16.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence (1981)Google Scholar
  17. 17.
    Mira, J., Delgado, A.E., Fernández-Caballero, A., Fernández, M.A.: Knowledge modelling for the motion detection task: The algorithmic lateral inhibition method. Expert Systems with Applications 27(2), 169–185 (2004)CrossRefGoogle Scholar
  18. 18.
    Nanda, H., Davis, L.: Probabilistic template based pedestrian detection in infrared videos. In: Proceedings of the IEEE Intelligent Vehicle Symposium, vol. 1, pp. 15–20 (2002)Google Scholar
  19. 19.
    Pavón, J., Gómez-Sanz, J., Fernández-Caballero, A., Valencia-Jiménez, J.J.: Development of intelligent multi-sensor surveillance systems with agents. Robotics and Autonomous Systems 55(12), 892–903 (2007)CrossRefGoogle Scholar
  20. 20.
    Xu, F., Liu, X., Fujimura, K.: Pedestrian detection and tracking with night vision. IEEE Transactions on Intelligent Transportation Systems 6(1), 63–71 (2005)CrossRefGoogle Scholar
  21. 21.
    Yilmaz, A., Shafique, K., Shah, M.: Target tracking in airborne forward looking infrared imagery. Image and Vision Computing 21(7), 623–635 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • José Carlos Castillo
    • 1
  • Juan Serrano-Cuerda
    • 1
  • Antonio Fernández-Caballero
    • 1
  • María T. López
    • 1
  1. 1.Departamento de Sistemas Informáticos & Instituto de Investigación en Informática de AlbaceteUniversidad de Castilla-La ManchaAlbaceteSpain

Personalised recommendations