Toward an Integrated Visuomotor Representation of the Peripersonal Space

  • Eris Chinellato
  • Beata J. Grzyb
  • Patrizia Fattori
  • Angel P. del Pobil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5602)


The purpose of this work is the creation of a description of objects in the peripersonal space of a subject that includes two kinds of concepts, related to on-line, action-related features and memorized, conceptual ones, respectively. The inspiration of such description comes from the distinction between sensorimotor and perceptual visual processing as performed by the two visual pathways of the primate cortex. A model of such distinction, and of a further subdivision of the dorsal stream, is advanced with the purpose of applying it to a robotic setup. The model constitutes the computational basis for a robotic system able to achieve advanced skills in the interaction with its peripersonal space.


Target Object Posterior Parietal Cortex Proprioceptive Information Dorsal Stream Experimental Brain Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Milner, A.D., Goodale, M.A.: The visual brain in action. Oxford University Press, Oxford (1995)Google Scholar
  2. 2.
    Goodale, M.A., Milner, A.D.: Sight Unseen. Oxford University Press, Oxford (2004)Google Scholar
  3. 3.
    Rizzolatti, G., Matelli, M.: Two different streams form the dorsal visual system: anatomy and functions. Experimental Brain Research 153(2), 146–157 (2003)CrossRefGoogle Scholar
  4. 4.
    Galletti, C., Kutz, D.F., Gamberini, M., Breveglieri, R., Fattori, P.: Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Experimental Brain Research 153(2), 158–170 (2003)CrossRefGoogle Scholar
  5. 5.
    Culham, J.C., Cavina-Pratesi, C., Singhal, A.: The role of parietal cortex in visuomotor control: what have we learned from neuroimaging? Neuropsychologia 44(13), 2668–2684 (2006)CrossRefGoogle Scholar
  6. 6.
    Chinellato, E., Demiris, Y., del Pobil, A.P.: Studying the human visual cortex for achieving action-perception coordination with robots. In: del Pobil, A.P. (ed.) Artificial Intelligence and Soft Computing, pp. 184–189. Acta Press, Anaheim (2006)Google Scholar
  7. 7.
    Himmelbach, M., Karnath, H.-O.: Dorsal and ventral stream interaction: contributions from optic ataxia. The Journal of Cognitive Neuroscience 17(4), 632–640 (2005)CrossRefGoogle Scholar
  8. 8.
    Sugio, T., Ogawa, K., Inui, T.: Neural correlates of semantic effects on grasping familiar objects. Neuroreport 14(18), 2297–2301 (2003)CrossRefGoogle Scholar
  9. 9.
    Chinellato, E., Grzyb, B.J., del Pobil, A.P.: Brain mechanisms for robotic object pose estimation. In: Intl. Joint Conf. on Neural Networks (2008)Google Scholar
  10. 10.
    Marzocchi, N., Breveglieri, R., Galletti, C., Fattori, P.: Reaching activity in parietal area V6A of macaque: eye influence on arm activity or retinocentric coding of reaching movements? Eur. J. Neurosci. 27(3), 775–789 (2008)CrossRefGoogle Scholar
  11. 11.
    Sakata, H., Taira, M., Kusunoki, M., Murata, A., Tanaka, Y., Tsutsui, K.: Neural coding of 3D features of objects for hand action in the parietal cortex of the monkey. Philosophical Transactions of the Royal Society B: Biological Sciences 353(1373), 1363–1373 (1998)CrossRefGoogle Scholar
  12. 12.
    Chinellato, E., del Pobil, A.P.: Neural coding in the dorsal visual stream. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS, vol. 5040, pp. 230–239. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Shikata, E., Hamzei, F., Glauche, V., Knab, R., Dettmers, C., Weiller, C., Büchel, C.: Surface orientation discrimination activates caudal and anterior intraparietal sulcus in humans: an event-related fMRI study. Journal of Neurophysiology 85(3), 1309–1314 (2001)Google Scholar
  14. 14.
    Fattori, P., Breveglieri, R., Marzocchi, N., Filippini, D., Bosco, A., Galletti, C.: Hand orientation during reach-to-grasp movements modulates neuronal activity in the medial posterior parietal area V6A. J. Neurosci. 29(6), 1928–1936 (2009)CrossRefGoogle Scholar
  15. 15.
    Tresilian, J.R., Mon-Williams, M.: Getting the measure of vergence weight in nearness perception. Experimental Brain Research 132(3), 362–368 (2000)CrossRefGoogle Scholar
  16. 16.
    Chinellato, E., del Pobil, A.P.: Distance and orientation estimation of graspable objects in natural and artificial systems. Neurocomputing 72, 879–886 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Eris Chinellato
    • 1
  • Beata J. Grzyb
    • 1
  • Patrizia Fattori
    • 2
  • Angel P. del Pobil
    • 1
  1. 1.Robotic Intelligence LabUniversitat Jaume I, Castellón de la PlanaSpain
  2. 2.Dipartimento di Fisiologia Umana e GeneraleUniversità di BolognaItaly

Personalised recommendations