Eye-Hand Coordination for Reaching in Dorsal Stream Area V6A: Computational Lessons

  • Eris Chinellato
  • Beata J. Grzyb
  • Nicoletta Marzocchi
  • Annalisa Bosco
  • Patrizia Fattori
  • Angel P. del Pobil
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5602)


Data related to the coordination and modulation between visual information, gaze direction and arm reaching movements in primates are analyzed from a computational point of view. The goal of the analysis is to construct a model of the mechanisms that allow humans and other primates to build dynamical representations of their peripersonal space through active interaction with nearby objects. The application of the model to robotic systems will allow artificial agents to improve their skills in their exploration of the nearby space.


Prefer Direction Macaque Monkey Dorsal Stream Peripersonal Space Left Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chinellato, E.: Visual Neuroscience of Robotic Grasping. PhD thesis, Universitat Jaume I, Spain (2008)Google Scholar
  2. 2.
    Chinellato, E., Demiris, Y., del Pobil, A.P.: Studying the human visual cortex for achieving action-perception coordination with robots. In: del Pobil, A.P. (ed.) Artificial Intelligence and Soft Computing, pp. 184–189. Acta Press, Anaheim (2006)Google Scholar
  3. 3.
    Goodale, M.A., Milner, A.D.: Sight Unseen. Oxford University Press, Oxford (2004)Google Scholar
  4. 4.
    Shadmehr, R., Wise, S.P.: The computational neurobiology of reaching and pointing: A foundation for motor learning. MIT Press, Cambridge (2005)Google Scholar
  5. 5.
    Jeannerod, M.: Visuomotor channels: Their integration in goal-directed prehension. Human Movement Science 18(2), 201–218 (1999)CrossRefGoogle Scholar
  6. 6.
    Galletti, C., Kutz, D.F., Gamberini, M., Breveglieri, R., Fattori, P.: Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Experimental Brain Research 153(2), 158–170 (2003)CrossRefGoogle Scholar
  7. 7.
    Culham, J.C., Gallivan, J.P., Cavina-Pratesi, C., Quinlan, D.J.: fMRI investigations of reaching and ego space in human superior parieto-occipital cortex. In: Behrmann, M., MacWhinney, B., Klatzky, R. (eds.) Embodiment, Ego-space and Action, pp. 247–274. Lawrence Erlbaum Associates, Mahwah (2008)Google Scholar
  8. 8.
    Fattori, P., Gamberini, M., Kutz, D.F., Galletti, C.: ’Arm-reaching’ neurons in the parietal area V6A of the macaque monkey. Eur. J. Neurosci. 13(12), 2309–2313 (2001)CrossRefGoogle Scholar
  9. 9.
    Dechent, P., Frahm, J.: Characterization of the human visual V6 complex by functional magnetic resonance imaging. Eur. J. Neurosci. 17(10), 2201–2211 (2003)CrossRefGoogle Scholar
  10. 10.
    Chinellato, E., del Pobil, A.P.: Neural coding in the dorsal visual stream. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS, vol. 5040, pp. 230–239. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Fattori, P., Kutz, D.F., Breveglieri, R., Marzocchi, N., Galletti, C.: Spatial tuning of reaching activity in the medial parieto-occipital cortex (area v6a) of macaque monkey. Eur. J. Neurosci. 22(4), 956–972 (2005)CrossRefGoogle Scholar
  12. 12.
    Marzocchi, N., Breveglieri, R., Galletti, C., Fattori, P.: Reaching activity in parietal area V6A of macaque: eye influence on arm activity or retinocentric coding of reaching movements? Eur. J. Neurosci. 27(3), 775–789 (2008)CrossRefGoogle Scholar
  13. 13.
    Gamberini, M., Passarelli, L., Fattori, P., Zucchelli, M., Bakola, S., Luppino, G., Galletti, C.: Cortical connections of the visuomotor parietooccipital area V6Ad of the macaque monkey. J. Comp. Neurol. 513(6), 622–642 (2009)CrossRefGoogle Scholar
  14. 14.
    Deneve, S., Pouget, A.: Basis functions for object-centered representations. Neuron 37(2), 347–359 (2003)CrossRefGoogle Scholar
  15. 15.
    Rauber, A., Merkl, D., Dittenbach, M.: The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data. IEEE Transactions on Neural Networks 13(6), 1331–1341 (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Eris Chinellato
    • 1
  • Beata J. Grzyb
    • 1
  • Nicoletta Marzocchi
    • 2
  • Annalisa Bosco
    • 2
  • Patrizia Fattori
    • 2
  • Angel P. del Pobil
    • 1
  1. 1.Robotic Intelligence LabUniversitat Jaume I, Castellón de la PlanaSpain
  2. 2.Dipartimento di Fisiologia Umana e GeneraleUniversità di BolognaItaly

Personalised recommendations