Advertisement

Image Equilibrium: A Global Image Property for Human-Centered Image Analysis

  • Ó. Sánchez
  • M. Rincón
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5602)

Abstract

Photographs and pictures created by humans present schemes and structures in their composition which can be analysed on semantic levels, irrespective of subject or content. The search for equilibrium in composition is a constant which enables us to establish a kind of image syntax, creating a visual alphabet from basic elements such as point, line, contour, texture, etc. This paper describes an operator which quantifies image equilibrium, providing a picture characterisation very close to a pixel matrix with considerable semantic content.

Index Terms

human-centered image anlysis image syntax visual alphabet and semantic gap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arheim, R.: Visual Thinking. University of California, Berkeley (1969)Google Scholar
  2. 2.
    Ballard, D.H.: Generalizing the Hough Transform to detected arbitrary shapes. Pattern Recognition 13(2), 111–122 (1981)CrossRefzbMATHGoogle Scholar
  3. 3.
    Dondis, D.A.: A primer of Visual Literacy. The Massachussets Institute of Technology (1973)Google Scholar
  4. 4.
    Eakins, J., Graham, M.: Content-based image retrieval, Tech. Rep. JTAP-039, JISC (2000)Google Scholar
  5. 5.
    Govindaraju, V.: Locating human faces in photographs. International Journal of Computer Vision 19, 129–146 (1996)CrossRefGoogle Scholar
  6. 6.
    Rowley, H.A., Baluja, S., Kanade, T.: Neural Network based FACE detection. IEE Trans. Pattern Analysis and Machine Intelligence 20, 23–38 (1998)CrossRefGoogle Scholar
  7. 7.
    Schneiderman, H., Kanade, T.: A Statistical model 3D object detection applied to faces and cars. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2000), Hilton Head Island, SC. IEEE, Los Alamitos (2000)Google Scholar
  8. 8.
    Smeulders, W.M., Worring, M., Santin, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ó. Sánchez
    • 1
  • M. Rincón
    • 2
  1. 1.Gestión de Infraestructuras de Andalucía, S.A. Regional Ministry of Public Works and Transport, Junta de AndalucíaSevilleSpain
  2. 2.Dpto. de Inteligencia Artificial, ETSI Informática.UNEDMadridSpain

Personalised recommendations