Quality Checking of Medical Guidelines Using Interval Temporal Logics: A Case-Study

  • Guido Sciavicco
  • Jose M. Juarez
  • Manuel Campos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5602)


Computer-based decision support in health-care is becoming more and more important in recent years. Clinical Practise Guidelines are documents supporting health-care professionals in managing a disease in a patient, in order to avoid non-standard practices or outcomes. In this paper, we consider the problem of formalizing a guideline in a logical language. The target language is an interval-based temporal logic interpreted over natural numbers, namely the Propositional Neighborhood Logic, which has been shown to be expressive enough for our objective, and for which the satisfiability problem has been shown to be decidable. A case-study of a real guideline is presented.


Temporal Logic Quality Check Clinical Decision Support System Interval Model Medical Guideline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bresolin, D., Goranko, V., Montanari, A., Sala, P.: Tableau Systems for Logics of Subinterval Structures over Dense Orderings. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 73–89. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: On Decidability and Expressiveness of Propositional Interval Neighborhood Logics. In: Artemov, S.N., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 84–99. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Combi, C., Gozzi, M., Juarez, J.M., Marin, R., Oliboni, B.: Querying clinical workflows by temporal similarity. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS, vol. 4594, pp. 469–478. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Dazzi, L., Fassino, C., Saracco, R., Quaglini, S., Stefanelli, M.: A patient workflow management system built on guidelines. In: Proc. of AMIA Annu. Fall Symp., pp. 146–150 (1997)Google Scholar
  6. 6.
    de Clercq, P.A., Blom, J.A., Korsten, H.H.M., Hasman, A.: Approaches for creating computer-interpretable guidelines that facilitate decision support. Artificial Intelligence in Medicine 31(1), 1–27 (2004)CrossRefGoogle Scholar
  7. 7.
    Field, M.J., Lohr, N.K.: Guidelines for Clinical Practice: from Development to Use. National Academic Press, London (1992)Google Scholar
  8. 8.
    Fox, J., Johns, N., Lyons, C., Rahmanzadeh, A., Thomson, R., Wilson, P.: Proforma: a general technology for clinical decision support systems. Computer Methods and Programs in Biomedicine 54(2), 59–67 (1997)CrossRefGoogle Scholar
  9. 9.
    Gabbay, D.M., Hodkinson, I.M., Reynolds, M.: Temporal Logic: Mathematical Foundations and Computational Aspects. Oxford University Press, Oxford (1994)CrossRefzbMATHGoogle Scholar
  10. 10.
    Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval neighborhood temporal logics. Journal of Universal Computer Science 9(9), 1137–1167 (2003)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Halpern, J., Shoham, Y.: A propositional modal logic of time intervals. Journal of the ACM 38(4), 935–962 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hederman, L., Smutek, D.: Representing clinical guidelines a comparative study in uml (2002)Google Scholar
  13. 13.
    Hommersom, A., Lucas, P., Balser, M.: Meta-level verification of the quality of medical guidelines using interactive theorem proving. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 654–666. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Lucas, P.: Quality checking of medical guidelines through logical abduction. In: Proc. of the 23rd SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence (AI 2003), pp. 309–321 (2003)Google Scholar
  15. 15.
    Ohno-Machado, L., Gennari, S.: The guideline interchange format: A model for representing guidelines. Journal of the American Medical Informatics Association 5(4), 357–372 (1998)CrossRefGoogle Scholar
  16. 16.
    Panzarasa, S., Stefanelli, M.: Workflow management systems for guideline implementation. Neurological Sciences 27(3), 245–249 (2007)Google Scholar
  17. 17.
    Sciavicco, G.: Quality checking of medical guidelines using interval temporal logics. In: Proc. of the 12th Conference CAEPIA (Conferencia de la Asociación Española para la Inteligencia Artificiál) (2007)Google Scholar
  18. 18.
    Shahar, Y., Miksch, S., Johnson, P.: The asgaard project: a task-specific framework for the application and critiquing of time-oriented clinical guidelines. Artificial Intelligence in Medicine 14(1-2), 29–51 (1998)CrossRefGoogle Scholar
  19. 19.
    Suarez, J.I., Tarr, R.W., Selman, W.R.: Aneurysmal subarachnoid hemorrhage. New England Journal of Medicine 354, 387–396 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Guido Sciavicco
    • 1
  • Jose M. Juarez
    • 1
  • Manuel Campos
    • 2
  1. 1.Department of Information Engineering and CommunicationsUniversity of MurciaSpain
  2. 2.Department of Computer Science and SystemsUniversity of MurciaSpain

Personalised recommendations