Skip to main content

Bregman-EM-TV Methods with Application to Optical Nanoscopy

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5567))

Abstract

Measurements in nanoscopic imaging suffer from blurring effects concerning different point spread functions (PSF). Some apparatus even have PSFs that are locally dependent on phase shifts. Additionally, raw data are affected by Poisson noise resulting from laser sampling and ”photon counts” in fluorescence microscopy. In these applications standard reconstruction methods (EM, filtered backprojection) deliver unsatisfactory and noisy results. Starting from a statistical modeling in terms of a MAP likelihood estimation we combine the iterative EM algorithm with TV regularization techniques to make an efficient use of a-priori information. Typically, TV-based methods deliver reconstructed cartoon-images suffering from contrast reduction. We propose an extension to EM-TV, based on Bregman iterations and inverse scale space methods, in order to obtain improved imaging results by simultaneous contrast enhancement. We illustrate our techniques by synthetic and experimental biological data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertero, M., Lantéri, H., Zanni, L.: Iterative image reconstruction: a point of view. In: Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT). CRM series, vol. 8 (2008)

    Google Scholar 

  2. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Le, T., Chartrand, R., Asaki, T.J.: A variational approach to reconstructing images corrupted by Poisson noise. J. Math. Imaging Vision 27, 257–263 (2007)

    Article  MathSciNet  Google Scholar 

  4. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Transactions on Medical Imaging 1(2), 113–122 (1982)

    Article  Google Scholar 

  5. Richardson, W.H.: Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62, 55–59 (1972)

    Article  Google Scholar 

  6. Lucy, L.B.: An iterative technique for the rectification of observed distributions. The Astronomical Journal 79, 745–754 (1974)

    Article  Google Scholar 

  7. Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems 10, 1217–1229 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation based image restoration. Multiscale Modelling and Simulation 4, 460–489 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burger, M., Gilboa, G., Osher, S., Xu, J.: Nonlinear inverse scale space methods. Commun. Math. Sci. 4(1), 179–212 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burger, M., Frick, K., Osher, S., Scherzer, O.: Inverse total variation flow. SIAM Multiscale Modelling and Simulation 6(2), 366–395 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data via the EM Algorithm. J. of the Royal Statistical Society, B 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  12. Natterer, F., Wübbeling, F.: Mathematical methods in image reconstruction. SIAM Monographs on Mathematical Modeling and Computation (2001)

    Google Scholar 

  13. Resmerita, E., et al.: The expectation-maximization algorithm for ill-posed integral equations: a convergence analysis. Inverse Problems 23, 2575–2588 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Vardi, Y., Shepp, L.A., Kaufman, L.: A statistical model for positron emission tomography. J. of the American Statistical Association 80(389), 8–20 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Iusem, A.N.: Convergence analysis for a multiplicatively relaxed EM algorithm. Mathematical Methods in the Applied Sciences 14, 573–593 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  17. Giusti, E.: Minimal surfaces and functions of bounded variation. Birkhäuser, Basel (1984)

    Book  MATH  Google Scholar 

  18. Chambolle, A.: An algorithm for total variation minimization and applications. J. of Mathematical Imaging and Vision 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  19. Resmerita, E., Anderssen, S.: Joint additive Kullback-Leibler residual minimization and regularization for linear inverse problems. Math. Meth. Appl. Sci. 30, 1527–1544 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 305. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  21. Brune, C., Sawatzky, A., Wübbeling, F., Kösters, T., Burger, M.: EM-TV methods for inverse problems with poisson noise (in preparation) (2009)

    Google Scholar 

  22. Bregman, L.M.: The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comp. Math. and Math. Phys. 7, 200–217 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  23. Klar, T.A., et al.: Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. PNAS 97, 8206–8210 (2000)

    Article  Google Scholar 

  24. Hell, S., Schönle, A.: Nanoscale resolution in far-field fluorescence microscopy. In: Hawkes, P.W., Spence, J.C.H. (eds.) Science of Microscopy. Springer, Heidelberg (2006)

    Google Scholar 

  25. Kittel, J., et al.: Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312, 1051–1054 (2006)

    Article  Google Scholar 

  26. Willig, K.I., Harke, B., Medda, R., Hell, S.W.: STED microscopy with continuous wave beams. Nature Meth. 4(11), 915–918 (2007)

    Article  Google Scholar 

  27. Sawatzky, A., Brune, C., Wübbeling, F., Kösters, T., Schäfers, K.: Accurate EM-TV algorithm in PET with low SNR. In: IEEE Nucl. Sci. Symp. (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brune, C., Sawatzky, A., Burger, M. (2009). Bregman-EM-TV Methods with Application to Optical Nanoscopy. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02256-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02255-5

  • Online ISBN: 978-3-642-02256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics