Skip to main content

A Variational Model for Interactive Shape Prior Segmentation and Real-Time Tracking

  • Conference paper
Book cover Scale Space and Variational Methods in Computer Vision (SSVM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5567))

Abstract

In this paper, we introduce a semi-automated segmentation method based on minimizing the Geodesic Active Contour energy incorporating a shape prior. We increase the robustness of the segmentation result using the additional shape information that represents the desired structure. Furthermore the user has the possibility to take corrective actions during the segmentation and adapt the shape prior position. Interaction is often desirable when processing difficult data like in medical applications. To facilitate the user interaction we add a shape deformation which allows to change the shape position manually by the user and automatically in terms of underlying image features. Using a variational formulation, the optimization can be done in a globally optimal manner for a fixed shape representation. To obtain real-time behavior, which is especially important for an interactive tool, the whole method is implemented on the GPU. Experiments are done on medical, as well as on video data and camera streams that are processed in real-time. In terms of medical data we compare our method with a segmentation done by an expert. The GPU based binaries will be available online on our homepage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cremers, D., Tischhäuser, F., Weickert, J., Schnörr, C.: Diffusion snakes: Introducing statistical shape knowledge into the Mumford–Shah functional. International Journal of Computer Vision 50(3), 295–313 (2002)

    Article  MATH  Google Scholar 

  2. Leventon, M., Faugeraus, O., Grimson, W.: Level set based segmentation with intensity and curvature priors. In: Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 4–11 (2000)

    Google Scholar 

  3. Leventon, M., Grimson, W., Faugeras, O.: Statistical shape influence in geodesic active contours. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 316–323. IEEE, Los Alamitos (2000)

    Google Scholar 

  4. Paragios, N., Rousson, M., Ramesh, V.: Matching distance functions: A shape-to-area variational approach for global-to-local registration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 775–789. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Paragios, N., Rousson, M., Ramesh, V.: Non-rigid registration using distance functions. Computer Vision and Image Understanding 89(2-3), 142–165 (2003)

    Article  MATH  Google Scholar 

  6. Unger, M., Pock, T., Bischof, H.: Continuous Globally Optimal Image Segmentation with Local Constraints. In: Computer Vision Winter Workshop (2008)

    Google Scholar 

  7. Unger, M., Pock, T., Trobin, W., Cremers, D., Bischof, H.: TVSeg - Interactive total variation based image segmentation. In: British Machine Vision Conference (2008)

    Google Scholar 

  8. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and variational problems. Comm. on Pure and Applied Math. XLII(5), 577–685 (1988)

    MathSciNet  MATH  Google Scholar 

  9. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  10. Potts, R.B.: Some generalized order-disorder transformations. Proc. Camb. Phil. Soc. 48, 106–109 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM Journal of Applied Mathematics 66(5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kass, M.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1980)

    Article  Google Scholar 

  13. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  14. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Conformal curvature flows: From phase transitions to active vision. Archive for Rational Mechanics and Analysis, 275–301 (1996)

    Google Scholar 

  15. Kichenassamy, S., Kumar, A., Olver, P.J., Tannenbaum, A.R., Yezzi Jr., A.J.: Gradient flows and geometric active contour models. In: International Conference on Computer Vision, pp. 810–815 (1995)

    Google Scholar 

  16. Leung, S., Osher, S.: Global minimization of the active contour model with TV-inpainting and two-phase denoising. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds.) VLSM 2005. LNCS, vol. 3752, pp. 149–160. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.J.: Global minimizers of the active contour/snake model. In: International Conference on Free Boundary Problems: Theory and Applications (FBP) (2005)

    Google Scholar 

  18. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.J.: Fast global minimization of the active contour/snake model. J. of Mathematical Imaging and Vision 28(2), 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  19. Chan, T.F., Esedoglu, S.: Aspects of total variation regularized L1 function approximation. SIAM Journal of Applied Mathematics 65(5), 1817–1837 (2005)

    Article  MATH  Google Scholar 

  20. Cremers, D., Schmidt, F.R., Barthel, F.: Shape priors in variational image segmentation: Convexity, Lipschitz continuity and globally optimal solutions. In: Computer Vision and Pattern Recognition, pp. 1–6 (2008)

    Google Scholar 

  21. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM Journal on Scientific Computing 20(6), 1964–1977 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Carter, J.: Dual Methods for Total Variation-based Image Restoration. PhD thesis, UCLA (2001)

    Google Scholar 

  23. Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20(1-2), 89–97 (2004)

    MathSciNet  Google Scholar 

  24. Chambolle, A.: Total variation minimization and a class of binary MRF models. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 136–152. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Rudin, L.I., Osher, S.J., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM Report 08-34 (2008)

    Google Scholar 

  27. Zhu, M., Wright, S.J., Chan, T.F.: Duality-based algorithms for total variation image restoration. UCLA CAM Report 08-33 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Werlberger, M., Pock, T., Unger, M., Bischof, H. (2009). A Variational Model for Interactive Shape Prior Segmentation and Real-Time Tracking. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02256-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02255-5

  • Online ISBN: 978-3-642-02256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics