Skip to main content

Momentum Based Optimization Methods for Level Set Segmentation

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5567))

Abstract

Segmentation of images is often posed as a variational problem. As such, it is solved by formulating an energy functional depending on a contour and other image derived terms. The solution of the segmentation problem is the contour which extremizes this functional. The standard way of solving this optimization problem is by gradient descent search in the solution space, which typically suffers from many unwanted local optima and poor convergence. Classically, these problems have been circumvented by modifying the energy functional. In contrast, the focus of this paper is on alternative methods for optimization. Inspired by ideas from the machine learning community, we propose segmentation based on gradient descent with momentum. Our results show that typical models hampered by local optima solutions can be further improved by this approach. We illustrate the performance improvements using the level set framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: Proc. ICCV 2003, October 2003, vol. 1, pp. 26–33 (2003)

    Google Scholar 

  2. Papandreou, G., Maragos, P.: Multigrid geometric active contour models. IEEE Transactions on Image Processing 16(1), 229–240 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kenigsberg, A., Kimmel, R., Yavneh, I.: A multigrid approach for fast geodesic active contours. Technical Report CIS-2004-06, Technion–Israel Inst. Technol., Haifa (2004)

    Google Scholar 

  4. Paragios, N., Mellina-Gottardo, O., Ramesh, V.: Gradient vector flow fast geometric active contours. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(3), 402–407 (2004)

    Article  Google Scholar 

  5. Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Fast geodesic active contours. IEEE Transactions on Image Processing 10(10), 1467–1475 (2001)

    Article  MathSciNet  Google Scholar 

  6. Weickert, J., Kühne, G.: Fast methods for implicit active contour models. In: Geometric Level Set Methods in Imaging, Vision and Graphics. Springer, Heidelberg (2003)

    Google Scholar 

  7. Charpiat, G., Keriven, R., Pons, J.P., Faugeras, O.: Designing spatially coherent minimizing flows for variational problems based on active contours. In: Proc. ICCV 2005, October 2005, vol. 2, pp. 1403–1408 (2005)

    Google Scholar 

  8. Sundaramoorthi, G., Yezzi, A., Mennucci, A.: Sobolev active contours. International Journal of Computer Vision 73(3), 345–366 (2007)

    Article  MATH  Google Scholar 

  9. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  10. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  11. Kimmel, R.: Fast edge integration. In: Geometric Level Set Methods in Imaging, Vision and Graphics. Springer, Heidelberg (2003)

    Google Scholar 

  12. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Osher, S., Fedkiw, R.: Level Set and Dynamic Implicit Surfaces. Springer, New York (2003)

    Book  MATH  Google Scholar 

  14. Peng, D., Merriman, B., Osher, S., Zhao, H.K., Kang, M.: A pde-based fast local level set method. Journal of Computational Physics 155(2), 410–438 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sethian, J.: A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Science 93, 1591–1595 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhao, H.K.: A fast sweeping method for eikonal equations. Mathematics of Computation (74), 603–627 (2005)

    Google Scholar 

  17. Läthén, G., Jonasson, J., Borga, M.: Phase based level set segmentation of blood vessels. In: Proc. ICPR 2008, Tampa, FL, USA, IAPR (December 2008)

    Google Scholar 

  18. Granlund, G.H., Knutsson, H.: Signal Processing for Computer Vision. Kluwer Academic Publishers, Netherlands (1995)

    Book  Google Scholar 

  19. Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Läthén, G., Andersson, T., Lenz, R., Borga, M. (2009). Momentum Based Optimization Methods for Level Set Segmentation. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02256-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02255-5

  • Online ISBN: 978-3-642-02256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics