Skip to main content

Semi-supervised Segmentation Based on Non-local Continuous Min-Cut

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5567))

Abstract

We propose a semi-supervised image segmentation method that relies on a non-local continuous version of the min-cut algorithm and labels or seeds provided by a user. The segmentation process is performed via energy minimization. The proposed energy is composed of three terms. The first term defines labels or seed points assigned to objects that the user wants to identify and the background. The second term carries out the diffusion of object and background labels and stops the diffusion when the interface between the object and the background is reached. The diffusion process is performed on a graph defined from image intensity patches. The graph of intensity patches is known to better deal with textures because this graph uses semi-local and non-local image information. The last term is the standard TV term that regularizes the geometry of the interface. We introduce an iterative scheme that provides a unique minimizer. Promising results are presented on synthetic textures a nd real-world images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Strang, G.: Maximal Flow Through A Domain. Mathematical Programming 26(2), 123–143 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Protiere, A., Sapiro, G.: Interactive image segmentation via adaptive weighted distances. IEEE Transactions on Image Processing 16(4), 1046–1057 (2007)

    Article  MathSciNet  Google Scholar 

  3. Cremers, D., Fluck, O., Rousson, M., Aharon, S.: A Probabilistic Level Set Formulation for Interactive Organ Segmentation. In: SPIE (2007)

    Google Scholar 

  4. Appleton, B., Talbot, H.: Globally minimal surfaces by continuous maximal flows. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(1), 106–118 (2006)

    Article  Google Scholar 

  5. Unger, M., Pock, T., Cremers, D., Bischof, H.: Tvseg - interactive total variation based image segmentation. In: British Machine Vision Conference (BMVC), Leeds, UK (September 2008)

    Google Scholar 

  6. Buades, A., Coll, B., Morel, J.: A review of image denoising algorithms, with a new one. Multiscale Modeling & Simulation 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gilboa, G., Osher, S.: Nonlocal linear image regularization and supervised segmentation. Multiscale Modeling and Simulation 6(2), 595–630 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Elias, P., Feinstein, A., Shannon, C.E.: Note on Maximum Flow Through a Network. IRE Transactions on Information Theory 2, 117–119 (1956)

    Article  Google Scholar 

  9. Efros, A., Leung, T.: Texture Synthesis by Non-Parametric Sampling. In: IEEE International Conference on Computer Vision, vol. 2, pp. 10–33 (1999)

    Google Scholar 

  10. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 888–905 (2000)

    Article  Google Scholar 

  11. Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. International Journal of Computer Vision 43(1), 7–27 (2001)

    Article  MATH  Google Scholar 

  12. Efros, A., Freeman, W.: Image quilting for texture synthesis and transfer. In: Proceedings of the Conference on Computer graphics and interactive techniques, SIGGRAPH, pp. 341–346. ACM, New York (2001)

    Google Scholar 

  13. Liang, L., Liu, C., Xu, Y., Guo, B., Shum, H.: Real-time texture synthesis by patch-based sampling. ACM Trans. Graph. 20(3), 127–150 (2001)

    Article  Google Scholar 

  14. Bresson, X., Chan, T.: Non-local Unsupervised Variational Image Segmentation Models, UCLA CAM Report 08-67 (2008)

    Google Scholar 

  15. Wu, Z., Leahy, R.: An Optimal graph theoretic approach to data clustering: Theory and its application to image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(11), 1101–1113 (1993)

    Article  Google Scholar 

  16. Ishikawa, H., Geiger, D.: Segmentation by grouping junctions. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 125–131 (1998)

    Google Scholar 

  17. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In: Proceedings of Eighth IEEE International Conference on Computer Vision, vol. 1, pp. 105–112 (2001)

    Google Scholar 

  18. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient n-d image segmentation. Int. J. Comput. Vision 70(2), 109–131 (2006)

    Article  Google Scholar 

  19. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 2001 (2001)

    Article  Google Scholar 

  20. Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: Image and video synthesis using graph cuts. In: Proceedings of the Conference on Computer graphics and interactive techniques, SIGGRAPH, vol. 22(3), pp. 277–286 (July 2003)

    Google Scholar 

  21. Blum, A., Chawla, S.: Learning from labeled and unlabeled data using graph mincuts. In: Proceedings of the Eighteenth International Conference on Machine Learning, pp. 19–26. Morgan Kaufmann Publishers Inc., San Francisco (2001)

    Google Scholar 

  22. Yu, S., Shi, J.: Segmentation given partial grouping constraints. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 173–183 (2004)

    Article  Google Scholar 

  23. Grady, L., Funka-lea, G.: Multi-label image segmentation for medical applications based on graph-theoretic electrical potentials. In: Proceedings of the European Conference on Computer Vision, pp. 230–245. Springer, Heidelberg (2004)

    Google Scholar 

  24. Zhou, D., Scholkopf, B.: A Regularization Framework for Learning from Graph Data. In: Workshop on Statistical Relational Learning and Its Connections to Other Fields (2004)

    Google Scholar 

  25. Unger, M., Pock, T., Bischof, H.: Continuous globally optimal image segmentation with local constraints. In: Computer Vision Winter Workshop 2008 (2008)

    Google Scholar 

  26. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic Active Contours. International Journal of Computer Vision 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  27. Chambolle, A.: An Algorithm for Total Variation Minimization and Applications. Journal of Mathematical Imaging and Vision 20(1–2), 89–97 (2004)

    MathSciNet  Google Scholar 

  28. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A Database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, July 2001, vol. 2, pp. 416–423 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Houhou, N., Bresson, X., Szlam, A., Chan, T.F., Thiran, JP. (2009). Semi-supervised Segmentation Based on Non-local Continuous Min-Cut. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02256-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02255-5

  • Online ISBN: 978-3-642-02256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics