AgentTime: A Distributed Multi-agent Software System for University’s Timetabling

  • Eduard Babkin
  • Habib Abdulrab
  • Tatiana Babkina
Part of the Understanding Complex Systems book series (UCS)


In the course of researching timetabling problems for complex distributed systems this article applies the multi-agent paradigm of computations and presents a correspondent mathematical model for university’s timetabling problem solution. The model takes into account dynamic nature of this problem and individual preferences of different remote users for time and location of classes. In the framework of that model authors propose an original problem-oriented algorithm of multi-agent communication. Developed algorithm is used as a foundation for the distributed software system AgentTime. Based on multi-agent JADE platform AgentTime provides friendly graphical interface for online design of time tables for universities.


timetabling multi-agent algorithms distributed systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Simon, H.A.: Administrative Behavior. Free Press, New York (1976)Google Scholar
  2. 2.
    Haken, H.: Synergetics, an Introduction: Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology. Springer, New York (1983)zbMATHGoogle Scholar
  3. 3.
    Cheng, J.Q., Wellman, M.P.: The WALRAS Algorithm: A Convergent Distributed Implementation of General Equilibrium Outcomes. Journal of Computational Economics 12, 1–23 (1998)zbMATHCrossRefGoogle Scholar
  4. 4.
    Sandhu, K.S.: Automating Class Schedule Generation in the Context of a University Time-tabling Information System. PhD Thesis (2001)Google Scholar
  5. 5.
    Petrovic, S., Burke, E.: University Timetabling. University of Nottingham (2003)Google Scholar
  6. 6.
    Akkoyunly, E.A.: A Linear Algorithm for Computing the Optimum University Timetable. The Computer Journal 16(4), 347–350 (1973)CrossRefGoogle Scholar
  7. 7.
    Shaerf, A.: Local Search Techniques for Large High School Timetabling Problems. IEEE Transactions on Systems, Man And Cybernetics 29(4), 368–377 (1999)CrossRefGoogle Scholar
  8. 8.
    De Werra, D.: An Introduction to Timetabling. European Journal of Operational Research 19, 151–162 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Taha, T.R.: Numerical schemes for nonlinear evolution equations. The College Journal of Science and Technology 2, 105–116 (1987)Google Scholar
  10. 10.
    Dimopoulou, M., Miliotis, P.: Implementation of a university course and examination time-tabling system. European Journal of Operational Research 130(1), 202–213 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153. Springer, Heidelberg (1996)Google Scholar
  12. 12.
    Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079. Springer, Heidelberg (2001)Google Scholar
  13. 13.
    Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740. Springer, Heidelberg (2003)Google Scholar
  14. 14.
    Back, T.: Evolutionary Algorithms in theory and practice. Oxford University Press, New-York (1995)Google Scholar
  15. 15.
    Sharma, D., Chandra, N.: An evolutionary approach to constraint-based timetabling. In: Kowalczyk, R., Loke, S.W., Reed, N.E., Graham, G. (eds.) PRICAI-WS 2000. LNCS, vol. 2112, pp. 80–92. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Sanchez, E., Shibata, T., Zadeh, L.: Genetic Algorithms and Fuzzy Logic Systems. In: Soft Computing Perspectives. World Scientific, Singapore (1997)Google Scholar
  17. 17.
    Buckles, B.P., Petry, F.E.: Genetic Algorithms. IEEE Computer Society Press, Los Alamitos (1992)Google Scholar
  18. 18.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  19. 19.
    Maxfield, C.: Genetic algorithms: programs that boggle the mind. EDN (1997)Google Scholar
  20. 20.
    Srinivas, M., Patnik, L.M.: Genetic Algorithms: A Survey. IEEE Computer 27(6), 17–26 (1994)Google Scholar
  21. 21.
    Abramson, D.: Constructing School Timetables Using Simulated Annealing: Sequential and Parallel Algorithms. Management-Science (1991)Google Scholar
  22. 22.
    Wellman, M.P., Walsh, W.E., Wurman, P.R., MacKie-Mason, J.K.: Auction Protocols for De-centralized Scheduling. Games and Economic Behavior 35, 271–303 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Walsh, W.E., Yokoo, M., Hirayama, K., Wellman, M.P.: On Market-Inspired Approaches to Propositional Satisfiability. In: Proceedings of Int. Conf. IJCAI 2000, pp. 1152–1160 (2001)Google Scholar
  24. 24.
    Yokoo, M., Hirayama, K.: Distributed Constraint Satisfaction Algorithm for Complex Local Problems. In: Proceedings of the Int. Conf. ICMAS 1998, pp. 372–379 (1998)Google Scholar
  25. 25.
    Yokoo, M., Hirayama, K.: Algorithms for Distributed Constraints Satisfaction: A Review. In: Proceedings of Int. Conf. AAMAS 2002, vol. 3(2), pp. 185–207 (2000)Google Scholar
  26. 26.
    Garrido, L., Sycara, K.: Multi-Agent Meeting Scheduling: Preliminary Experimental Results. In: Proceedings of the Int. Conf. ICMAS 1996 (1996)Google Scholar
  27. 27.
    Franzin, M.S., Freuder, E.C., Rossi, F., Wallace, R.: Multiagent Meeting Scheduling with Preferences: Efficiency, Privacy Loss, and Solution Quality. In: Proceedings of Intrl. Conf. AAAI 2002 (workshop on preference in AI and CP) (2002)Google Scholar
  28. 28.
    BenHassine, A., Ito, T., Ho, T.B.: A New Distributed Approach to Solve Meeting Scheduling Problems. In: Proceedings of IEEE/WIC Int. Conf. IAT, pp. 588–591 (2003)Google Scholar
  29. 29.
    BenHassine, A., Defago, X., Ho, T.B.: Agent-Based Approach to Dynamic Meeting Scheduling Problems. In: Proceedings of Int. Conf. AAMAS 2004, vol. 3, pp. 1132–1139 (2004)Google Scholar
  30. 30.
    Al–Maqtari, S., Abdulrab, H., Nosary, A.: Constraint Programming and Multi-Agent System mixing approach for agricultural Decision Support System. In: Proceedings of In. Conf. ECCS 2005, pp. 199–213 (2005)Google Scholar
  31. 31.
    Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE. Wiley, Chichester (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Eduard Babkin
    • 1
  • Habib Abdulrab
    • 2
  • Tatiana Babkina
    • 3
  1. 1.Higher School of EconomicsLITIS Laboratory, INSA de Rouen, France. State UniversityNizhny NovgorodRussia
  2. 2.LITIS LaboratoryINSA de RouenFrance
  3. 3.Higher School of Economics.State UniversityNizhny NovgorodRussia

Personalised recommendations