Advertisement

Cooperative Medical Diagnosis Elaboration by Physicians and Artificial Agents

  • Barna Laszlo Iantovics
Part of the Understanding Complex Systems book series (UCS)

Summary

Cooperative medical diagnosis systems are well suited for the solving of difficult medical diagnosis problems. The solving of many medical diagnosis problems require knowledge from different medical domains, which cannot be detained by a single physician or a medical computational system. In this paper, a novel medical multiagent system called MASM (Medical Assistant Multiagent System) that can help physicians in the diagnosis processes is proposed. The proposed multiagent system is a complex system, composed from relatively simple agents that cooperatively with physicians can solve difficult medical problems. MASM multiagent system can discover autonomously emergent proprieties, like the necessary cooperation links between agents and cooperation links between physicians that emerge during the problems solving. Discovered cooperation links allows to the MASM system to self-organize depending on the necessities, in order to increases the accuracy of the diagnostics elaborated by the physicians and to reduces the complexity of the diagnosis processes realized by physicians by hiding some of tasks that must be fulfilled.

Keywords

complex systems emergent proprieties in artificial and natural systems self-organizing systems intelligent agents knowledge-based systems diagnostic accuracy medical diagnosis systems multiagent systems cooperative problem solving medical applications computational methods in medicine applications to biology and medical sciences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferber, J.: Multi-Agent Systems: An introduction to Distributed Artificial Intelligence. Addison Wesley, London (1999)Google Scholar
  2. 2.
    Iantovics, B.L., Chira, C., Dumitrescu, D.: Principles of the Intelligent Agents. Casa Cartii de Stiinta Press, Cluj-Napoca (2007) (in Romanian) Google Scholar
  3. 3.
    Weiss, G. (ed.): Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT Press, Cambridge (2000)Google Scholar
  4. 4.
    Iantovics, B.L.: Cooperative Medical Diagnosis Systems. In: Proceedings of the 2nd International Conference Interdisciplinarity in Engineering, Tg. Mures, Romania, pp. 669–674 (2005)Google Scholar
  5. 5.
    Laita, L.M., Gonzlez-Paez, G., Roanes-Lozano, E., Maojo, V., de Ledesma, L., Laita, L.: A Methodology for Constructing Expert Systems for Medical Diagnosis. In: Crespo, J.L., Maojo, V., Martin, F. (eds.) ISMDA 2001. LNCS, vol. 2199, pp. 146–152. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Abdelaziz, T., Elammari, M., Unland, R.: Visualizing a Multiagent-Based Medical Diagnosis System Using a Methodology Based on Use Case Maps. In: Lindemann, G., Denzinger, J., Timm, I.J., Unland, R. (eds.) MATES 2004. LNCS (LNAI), vol. 3187, pp. 198–212. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Unland, R.: A Holonic Multi-agent System for Robust, Flexible, and Reliable Medical Diagnosis. In: Meersman, R., Tari, Z. (eds.) OTM-WS 2003. LNCS, vol. 2889, pp. 1017–1030. Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Alves, V., Neves, J., Maia, M., Nelas, L.: A Computational Environment for Medical Diagnosis Support Systems. In: Crespo, J.L., Maojo, V., Martin, F. (eds.) ISMDA 2001. LNCS, vol. 2199, pp. 42–47. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Vesnenko, A.I., Popov, A.A., Pronenko, M.I.: Topo-typology of the structure of full-scaled clinical diagnoses in modern medical information systems and technologies. Cybernetics and Systems Analysis 38(6), 911–920 (2002)zbMATHCrossRefGoogle Scholar
  10. 10.
    Wooldridge, M., O’Hare, G.M.P., Elks, R.: Feline - A case study in the design and implementation of a co-operating expert system. In: Proceedings of the International Conference on Expert Systems and their Applications, Avignon (1991)Google Scholar
  11. 11.
    Iantovics, B.L.: Agent-Based Medical Diagnosis Systems. In: Computing and Informatics, Slovak Academy of Sciences, Bratislava (2007)Google Scholar
  12. 12.
    Iantovics, B.L.: A Novel Medical Diagnosis System. In: Bourgine, P., Kepes, F., Schoenauer, M. (eds.) Proceedings of the European Conference on Complex Systems, ECCS 2005, Paris, pp. 961–962 (2005)Google Scholar
  13. 13.
    Mitsukura, Y., Mitsukura, K., Fukumi, M., Akamatsu, N., Witold-Pedrycz, W.: Medical Diagnosis System Using the Intelligent Fuzzy Systems. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3213, pp. 807–826. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Iantovics, B.L.: A Novel Diagnosis System Specialized in Difficult Medical Diagnosis Problems Solving. Emergent Properties In Natural And Artificial Dynamical Systems. In: Aziz-Alaoui, M.A., Bertelle, C. (eds.) Understanding Complex Systems, pp. 187–197. Springer, Heidelberg (2006)Google Scholar
  15. 15.
    Hayes-Roth, B., Hewett, M., Washington, R., Hewett, R., Seiver, A.: Distributing intelligence within an individual. In: Gasser, L., Huhns, M. (eds.) Distributed Artificial Intelligence, vol. II, pp. 385–412. Pitman Publishing/Morgan Kaufmann, London/San Mateo (1989)Google Scholar
  16. 16.
    Lanzola, G., Falasconi, S., Stefanelli, M.: Cooperative Agents Implementing Distributed Patient Management. In: Proceedings of the MAAMAW 1996 Conference. Springer, Berlin (1996)Google Scholar
  17. 17.
    Lanzola, G., Falasconi, S., Stefanelli, M.: Cooperative Software Agents for Patient Management. In: Proceedings of the AIME 1995 Conference, pp. 173–184 (1995)Google Scholar
  18. 18.
    Huang, J., Jennings, N.R., Fox, J.: An agent-based approach to health care management. International Journal of Applied Artificial Intelligence 9(4), 401–420 (1995)CrossRefGoogle Scholar
  19. 19.
    Kirn, S.: Ubiquitous Healthcare: The OnkoNet Mobile Agents Architecture. In: Aksit, M., Mezini, M., Unland, R. (eds.) NODe 2002. LNCS, vol. 2591, pp. 265–277. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Shortliffe, E.H.: Computer-Based Medical Consultations: MYCIN. Elsevier, New York (1976)Google Scholar
  21. 21.
    Iantovics, B.L.: The Intelligence of the Expert System Agents. In: Proceedings of the 2nd International Conference on Economics, Law and Management, Tg. Mures, pp. 91–101 (2006)Google Scholar
  22. 22.
    Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)Google Scholar
  23. 23.
    Unland, R., Ulieru, M.: Swarm Intelligence and the Holonic Paradigm: A Promising Symbiosis for Medical Diagnostic Systems Design. In: Proceedings of the 9th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, Melbourne, Australia (2005)Google Scholar
  24. 24.
    Iantovics, B.L.: A Novel Mobile Agent Architecture. In: Proceedings of the 4-th International Conference on Theory and Application of Mathematics and Informatics, Albac county, Acta Universitatis Apulensis, vol. 11, pp. 295–306 (2005)Google Scholar
  25. 25.
    Iantovics, B.L.: A New Intelligent Mobile Multiagent System. In: Proceedings of the IEEE International Workshop on Soft Computing Applications, Szeged-Hungary and Arad-Romania, pp. 153–159. IEEE Press, Los Alamitos (2005)Google Scholar
  26. 26.
    Iantovics, B.L.: Security Issues of the Mobile Multiagent Systems. In: International Conference European Integration between Tradition and Modernity, Tg. Mures, pp. 696–705 (2005)Google Scholar
  27. 27.
    Iantovics, B.L.: Problem Solving Using Assistant Agents, vol. XVIII, pp. 173–179. Scientific Bulletin of the Petru Maior University, Tg. Mures (2006)Google Scholar
  28. 28.
    Iantovics, B.L.: A Novel Diagnosis System Specialized in Difficult Medical Diagnosis Problems Solving. In: Aziz-Alaoui, M.A., Bertelle, C. (eds.) Proceedings of the Emergent Proprieties in Natural and Artificial Dynamical Systems a workshop within European Conference on Complex Systems, pp. 107–112. Le Havre University Press, Paris (2005)Google Scholar
  29. 29.
    Jagannathan, V., Dodhiawala, R., Baum, L.S. (eds.): Blackboard Architectures and Applications. Academic Press, San Diego (1989)zbMATHGoogle Scholar
  30. 30.
    Iantovics, B.L.: Medical Diagnosis Systems. In: Proceedings of the Symposium Colocviul Academic Clujean de Informatica, pp. 33–39. Babes-Bolyai University Press, Cluj-Napoca (2005)Google Scholar
  31. 31.
    Iantovics, B.L.: Evolutionary Mobile Agents. In: Proceedings of the International Conference European Integration between Tradition and Modernity, pp. 761–769. Petru Maior University Press, Tg. Mures (2005)Google Scholar
  32. 32.
    Iantovics, B.L.: Evolutionary Problems Solving in Networks. In: Proceedings of the Symposium, Colocviul Academic Clujean de Informatica, pp. 39–45. Babes-Bolyai University Press, Cluj-Napoca (2005)Google Scholar
  33. 33.
    Iantovics, B.L.: Problem Solving Using Evolutionary Mobile Agents. In: Megan, M. (ed.) Proceedings of 9th National Conference of the Romanian Mathematical Society. Vest University Press, Timisoara (2005)Google Scholar
  34. 34.
    Iantovics, B.L.: Mobile Agents. In: Profesor Gheorghe Farcas la varsta de 70 de ani, pp. 171–185. Petru Maior University Press, Tg. Mures (2004)Google Scholar
  35. 35.
    Iantovics, B.L.: Intelligent Mobile Agents. In: Proceedings of the Symposium, Zilele Academice Clujene, pp. 67–74. Babes-Bolyai University Press, Cluj-Napoca (2004)Google Scholar
  36. 36.
    Iantovics, B.L.: A Novel Medical Diagnosis System. In: Proceedings of the 4-th International Conference on Theory and Applications in Mathematics and Informatics, Albac county, Acta Universitatis Apulensis, vol. 10, pp. 315–330 (2005)Google Scholar
  37. 37.
    Kuhl, E.J., Graham, J.H.: ESAgent: Expert System Control of Simulated Agent-Based Mobile Robots. Intelligent Systems Research Laboratory, Technical Report TR-ISRL-04-02, University of Louisville, Louisville (2004)Google Scholar
  38. 38.
    Bravata, D.M., Sundaram, V., McDonald, K.M., Smith, W.M., Szeto, H., Schleinitz, M.D., Owens, D.K.: Evaluating Detection and Diagnostic Decision Support Systems for Bioterrorism Response Emerging Infectious Diseases. Emerging Infectious Diseases 10(1), 100–108 (2004)Google Scholar
  39. 39.
    Adlassing, K.P.: Cardiag 2 Expert System. IEEE Transactions on Systems, Man and Cybernetics SMC-16(2) (1986)Google Scholar
  40. 40.
    Aikins, J.S., Kunz, J.C., Shortliffe, E.H., Fallat, R.J.: PUFF: An Expert System for Interpretation of Pulmonary Function Data. Comput. Biomed. Res. 16(3), 199–208 (1983)CrossRefGoogle Scholar
  41. 41.
    Kulikowski, C.A., Weiss, S.M.: Representation of Expert Knowledge for Consultation: the CASNET and EXPERT Projects. In: Szolovits, P. (ed.) Artificial Intelligence in medicine, pp. 21–56. Westview Press, Boulder (1982)Google Scholar
  42. 42.
    Nealon, J.L., Moreno, A.: The Application of Agent Technology to Healthcare. In: Proceedings of the First Agentcities Workshop: Challenges in Implementing Open Environments, Bologna, Italy (2002)Google Scholar
  43. 43.
    Zhang, S., Bodenreider, O.: Comparing Associative Relationships among Equivalent Concepts across Ontologies. Medinfo, pp. 459–463 (2004)Google Scholar
  44. 44.
    Bodenreider, O.: The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res. 32(1), 267–270 (2004)CrossRefGoogle Scholar
  45. 45.
    Montyne, F.: The Importance of Formal Ontologies: A Case Study in Occupational Health. In: d’Atri, A., Missikoff, M. (eds.) Proceedings of the OES-SEO 2001 Rome Workshop. Luiss Publications (2001)Google Scholar
  46. 46.
    Stevens, R., Baker, P., Bechhofer, S.G., Jacoby, A., Paton, N.W., Goble, C.A., Brass, A.: TAMBIS: Transparent Access to Multiple Bioinformatics Information Sources. Bioinformatics 16(2), 184–186 (2002)CrossRefGoogle Scholar
  47. 47.
    Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al.: Gene Ontology: Tool for the Unification of Biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2002)Google Scholar
  48. 48.
    Iantovics, B.L.: The CMDS Medical Diagnosis System. In: Symbolic and Numeric Algorithms for Scientific Computing. IEEE Computing Society Press, Los Alamitos (2007)Google Scholar
  49. 49.
    Elammari, M., Lalonde, W.: An agent oriented methodology: High level and intermediate models. In: Proceedings of the 1st International Workshop on Agent Oriented Information Systems, Heidelberg, Germany (1999)Google Scholar
  50. 50.
    Wooldrige, M., Jennings, N.R., Kinny, D.: The gaia methodology for agent-oriented analysis and design. In: Autonomous Agents and Multi-Agent Systems, vol. 3, pp. 285–312. Kluwer Academic Publishers, The Netherlands (2000)Google Scholar
  51. 51.
    Burrafato, P., Cossentino, M.: Designing a multi-agent solution for a bookstore with the passi methodology. In: Fourth International Bi-Conference Workshop on Agent-Oriented Information Systems, Toronto, Canada (2002)Google Scholar
  52. 52.
    Ulieru, A., Grabelkovsky, M.: Telehealth approach for glaucoma progression monitoring. International Journal: Information Theories and Applications 10, 326–329 (2005)Google Scholar
  53. 53.
    Iantovics, B.L.: The ICMA Agents Intelligence. In: International Conference European Integration between Tradition and Modernity. Petru Maior University Press, Tg. Mures (2007)Google Scholar
  54. 54.
    Yergens, D., Hiner, J., Denzinger, J., Noseworthy, T.: Multiagent simulation system for rapidly developing infectious disease models in developing countries. In: Proceedings of the 2nd International Workshop on Multi-Agent Systems for Medicine and Computational Biology, Hakodate, Japan, pp. 104–116 (2006)Google Scholar
  55. 55.
    Eder, L.: Managing Healthcare Information Systems with Web-Enabled Technologies. Idea group Publishing (2000)Google Scholar
  56. 56.
    Cabri, G., De Mola, F., Muratori, N., Quitadamo, R., Zambonelli, F.: Ubimedic: a ubiquitous computing solution for medical emergencies. In: Proceedings of the 2nd International Workshop on Multi-Agent Systems for Medicine and Computational Biology, Hakodate, Japan, pp. 42–46 (2006)Google Scholar
  57. 57.
    Nagarajappa, N.: Uploading Data from the Local to the Centralized Database for Glaucoma Diagnosis and Prediction - Internal Report, Electrical and Computer Engineering, University of Calgary (2002)Google Scholar
  58. 58.
    Ulieru, M., Geras, A.: Emergent Holarchies for e-Health Applications: A Case in Glaucoma Diagnosis. In: Proceedings of IECON 2002 - 28th Annual Conference of the IEEE Industrial Electronics Society, Sevilla, Spain (2002)Google Scholar
  59. 59.
    Ulieru, M., Pogrzeba, G.: Integrated Soft Computing Methodology for Diagnosis and Prediction with Application to Glaucoma Risk Evaluation. In: Proceedings of 6th IASTED International Conference on Artificial Intelligence and Soft Computing, Banff, Canada, July 17-19, 2002. AISC (2002)Google Scholar
  60. 60.
    Kanski, J.J., McAllister, J.A.: Glaucoma: A Coulour Manual of Diagnosis and Treatment, Butterworths, London, Boston, Singapore, Sydney, Toronto (1989)Google Scholar
  61. 61.
    Ulieru, M., Andrew, C.S., Rizzi, M., Karanicolas, C.: Using Soft Computing to Define Standards of Care in Glaucoma Monitoring. International Journal of Soft Computing: A Fusion of Foundations, Methodologies and Applications (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Barna Laszlo Iantovics
    • 1
  1. 1.Petru Maior University of Tg. MuresTg. MuresRomania

Personalised recommendations